Doms № 1 -2022

Doms № 2 -2022 (75-83 p)

Mechanisms of genetic predisposition to autoimmune lesions of the thyroid gland
Nagibin V.S., Sayenko Ya.A.


Autoimmune thyroid diseases (ATDs) are one of the most widespread disorders of the autoimmune spectrum, which include two nosologies: Graves’ disease and Hashimoto’s thyroiditis. In this review, we narrowed down only to aspects of genetic predisposition, however, several main conclusions can be drawn: the basic, or reference, level of auto- antibodies present in a healthy person is explained by the deficiency of the central immunological tolerance, but is normally corrected by peripheral immunological tolerance. Determination of an increased level of autoantibodies for diagnostic purposes is sufficient to perform only once. Combinations of a large number of gene polymorphisms with completely different functions, creating the uniqueness of each person, can lead to more or less affected predisposition to ATDs, which can be corrected at the current stage of development of medicine and genetic technologies only by way of life and environmental factors.

Keywords: autoimmune thyroid diseases, gene polymorphisms, Graves’ disease, Hashimoto’s thyroiditis.


  1. Jacobson DL, Gange SJ, Rose NR, Graham NM. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clinical immunology and immunopathology. 1997; 84:223–43.
  2. Global burden of diseases. Статистичний веб-ресурс. http:// .
  3. McGrogan A1, Seaman HE, Wright JW, de Vries CS. The incidence of autoimmune thyroid disease: a systematic review of the literature. Clin Endocrinol (Oxf). 2008;69(5):687-96.
  4. Ендокринологія. Довідник основних показників діяльності ендокринологічної служби України за 2016 рік. Київ 2017.
  5. Simmonds MJ. GWAS in autoimmune thyroid disease: redefining our understanding of pathogenesis. Nat Rev Endocrinol. 2013;9(5):277-87.
  6. Ibili ABP, Selver Eklioglu B, Atabek ME. General properties of autoimmune thyroid diseases and associated morbidities. J Pediatr Endocrinol Metab. 2020;33(4):509-515.
  7. «TheNobelPrizeinPhysiologyorMedicine1960″. Nobel Media AB. Retrieved 30 May 2015. (https://www.nobelprize. org/prizes/medicine/1960/summary/).
  8. Percik R, Shoenfeld Y. Check point inhibitors and autoimmunity: Why endocrinopathies and who is prone to? Best Pract Res Clin Endocrinol Metab. 2020;5:101411.
  9. Хаитов Р.М., Игнатьева Г.А., Сидорович И.Г. Иммунология: учебник. М.: Медицина, 2000.
  10. Caramalho Í, Nunes-Cabaço H, Foxall RB, Sousa AE. Regulatory T-Cell Development in the Human Thymus. Front Immunol. 2015;6:395.
  11. Dechairo BM, Zabaneh D, Collins J, Brand O, Dawson GJ, Green AP, et al. Association of the TSHR gene with Graves’ disease: the first disease specific locus. European journal of human genetics: EJHG. 2005; 13:1223–30.
  12. Ploski R, Brand OJ, Jurecka-Lubieniecka B, Franaszczyk M, Kula D, Krajewski P, et al. Thyroid stimulating hormone receptor (TSHR) intron 1 variants are major risk factors for Graves’ disease in three European Caucasian cohorts. PloS one. 2010; 5:e15512.
  13. Tomer Y, Hasham A, Davies TF, Stefan M, Concepcion E, Keddache M, et al. Fine mapping of loci linked to autoimmune thyroid disease identifies novel susceptibility genes. The Journal of clinical endocrinology and metabolism. 2013; 98:E144–52.
  14. Stefan M, Wei C, Lombardi A, Li CW, Concepcion ES, Inabnet WB 3rd, et al. Genetic-epigenetic dysregulation of thymic TSH receptor gene expression triggers thyroid autoimmunity. Proceedings of the National Academy of Sciences of the United States of America. 2014; 111:12562–7.
  15. Colobran R, Armengol Mdel P, Faner R, Gartner M, Tykocinski LO, Lucas A, et al. Association of an SNP with intrathymic transcription of TSHR and Graves’ disease: a role for defective thymic tolerance. Human molecular genetics. 2011; 20:3415–23.
  16. Bayer AL, Yu A, Adeegbe D, Malek TR. Essential role for interleukin-2 for CD4(+)CD25(+) T regulatory cell development during the neonatal period. The Journal of experimental medicine. 2005; 201:769–77.
  17. Chistiakov DA, Chistiakova EI, Voronova NV, Turakulov RI, Savost’anov KV. A variant of the Il2ra / Cd25 gene predisposing to graves’ disease is associated with increased levels of soluble interleukin-2 receptor. Scandinavian journal of immunology. 2011; 74:496–501.
  18. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature genetics. 2001; 27:68–73.
  19. Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C, et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. The Journal of clinical investigation. 2000; 106:R75–81.
  20. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, et al. The immune dysregulation, polyendocri-nopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature genetics. 2001; 27:20–1.
  21. Inoue N, Watanabe M, Morita M, Tomizawa R, Akamizu T, Tatsumi K, et al. Association of functional polymorphisms related to the transcriptional level of FOXP3 with prognosis of autoimmune thyroid diseases. Clinical and experimental immunology. 2010; 162:402–6.
  22. Li CW, Concepcion E, Tomer Y. Dissecting the role of the FOXP3 gene in the joint genetic susceptibility to autoimmune thyroiditis and diabetes: a genetic and functional analysis. Gene. 2015; 556:142–8.
  23. Gabrilovich DI. Myeloid-Derived Suppressor Cells. Cancer Immunol Res. 2017;5(1):3-8
  24. Ahmadi M, Mohammadi M, Ali-Hassanzadeh M, Zare M, Gharesi-Fard B. MDSCs in pregnancy: Critical players for a balanced immune system at the fetomaternal interface. Cell Immunol. 2019;346:103990.
  25. Xingxing Zang. 2018 Nobel Prize in medicine awarded to cancer immunotherapy: Immune checkpoint blockade – A personal account. Genes Dis. 2018 Dec; 5(4): 302–303.
  26. Weber R, Fleming V, Hu X, Nagibin V, Groth C, Altevogt P, Utikal J, Umansky V. Myeloid-Derived Suppressor Cells Hinder the Anti-Cancer Activity of Immune Checkpoint Inhibitors. // Front Immunol. 2018 11;9:1310.
  27. Fleming V, Hu X, Weller C, Weber R, Groth C, Riester Z, Hüser L, Sun Q, Nagibin V, Kirschning C, Bronte V, Utikal J, Al- tevogt P, Umansky V. Melanoma Extracellular Vesicles Generate Immunosuppressive Myeloid Cells by Upregulating PD-L1 via TLR4 Signaling. // Cancer Res. 2019;79(18):4715-4728.
  28. Chen M, Gilbert N, Liu H. Reduced expression of PD-L1 in autoimmune thyroiditis attenuate trophoblast invasion through ERK/MMP pathway. Reprod Biol Endocrinol. 2019;17(1):86.
  29. Miko E, Meggyes M, Doba K, Barakonyi A, Szereday L. Im- mune Checkpoint Molecules in Reproductive Immunology. Front Immunol. 2019;10:846.
  30. Donner H, Rau H, Walfish PG, Braun J, Siegmund T, Finke R, et al. CTLA4 alanine-17 confers genetic susceptibility to Graves’ disease and to type 1 diabetes mellitus. The Journal of clinical endocrinology and metabolism. 1997; 82:143–6.
  31. Nithiyananthan R, Heward JM, Allahabadia A, Franklyn JA, Gough SC. Polymorphism of the CTLA-4 gene is associated with autoimmune hypothyroidism in the United Kingdom. Thyroid: official journal of the American Thyroid Association. 2002; 12:3–6.
  32. Braun J, Donner H, Siegmund T, Walfish PG, Usadel KH, Badenhoop K. CTLA-4 promoter variants in patients with Graves’ disease and Hashimoto’s thyroiditis. Tissue antigens. 1998; 51:563–6.
  33. Ban Y, Davies TF, Greenberg DA, Concepcion ES, Osman R, Oashi T, et al. Arginine at position 74 of the HLA-DR beta1 chain is associated with Graves’ disease. Genes and immunity. 2004; 5:203–8.
  34. Menconi F, Monti MC, Greenberg DA, Oashi T, Osman R, Davies TF, et al. Molecular amino acid signatures in the MHC class II peptide-binding pocket predispose to autoimmune thyroiditis in humans and in mice. Proceedings of the National Academy of Sciences of the United States of America. 2008; 105:14034–9.
  35. Simmonds MJ, Howson JM, Heward JM, Cordell HJ, Fox- all H, Carr-Smith J, et al. Regression mapping of association between the human leukocyte antigen region and Graves dis- ease. American journal of human genetics. 2005; 76:157–63.
  36. Tomer Y, Ban Y, Concepcion E, Barbesino G, Villanueva R, Greenberg DA, et al. Common and unique susceptibility loci in Graves and Hashimoto diseases: results of whole-genome screening in a data set of 102 multiplex families. American journal of human genetics. 2003;73:736–47.
  37. Ban Y, Greenberg DA, Concepcion E, Skrabanek L, Villanueva R, Tomer Y. Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proceedings of the National Academy of Sciences of the United States of America. 2003; 100:15119–24.
  38. Hodge SE, Ban Y, Strug LJ, Greenberg DA, Davies TF, Concepcion ES, et al. Possible interaction between HLA-DRbeta1 and thyroglobulin variants in Graves’ disease. Thyroid: official journal of the American Thyroid Association. 2006; 16:351–5.
  39. Zhao SX, Xue LQ, Liu W, Gu ZH, Pan CM, Yang SY, et al. Robust evidence for five new Graves’ disease risk loci from a staged genome-wide association analysis. Human molecular genetics. 2013; 22:3347–62.
  40. Menard L, Cantaert T, Chamberlain N, Tangye SG, Riminton S, Church JA, et al. Signaling lymphocytic activation molecule (SLAM)/SLAM-associated protein pathway regulates human B-cell tolerance. The Journal of allergy and clinical immunology. 2014; 133:1149–61.
  41. Chen XJ, Gong XH, Yan N, Meng S, Qin Q, Jiang YF, et al. RNASET2 tag SNP but not CCR6 polymorphisms is associated with autoimmune thyroid diseases in the Chinese Han population. BMC medical genetics. 2015; 16:11.
  42. Szymanski K, Bednarczuk T, Krajewski P, Ploski R. The replication of the association of the rs6832151 within chromosomal band 4p14 with Graves’ disease in a Polish Caucasian population. Tissue antigens. 2012; 79:380–3.
  43. Robert Finestra T, Gribnau J. X chromosome inactivation: silencing, topology and reactivation. Curr Opin Cell Biol. 2017;46:54-61.
  44. Selmi C, Brunetta E, Raimondo MG, Meroni PL. The X chromosome and the sex ratio of autoimmunity. Autoimmun Rev. 2012;11(6-7):A531-7.