Unveiling the podocyte-protective effect of sodium-glucose cotransporter-2 inhibitors

Buchun Jiang, Zhiwen Cheng, Dongjie Wang, Fei Liu, Jingjing Wang, Haidong Fu, Jianhua Mao

Abstract  The renoprotective effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors in both diabetic and nondiabetic nephropathy are widely recognized due to results from randomized controlled trials notably the DAPA-CKD and EMPA-KIDNEY trials. Research exploring the mechanisms of renoprotection indicates that SGLT2 inhibitors exert protective effects on podocytes by enhancing autophagy and stabilizing the structure of podocytes and basement membranes. Furthermore, reductions in lipotoxicity, oxidative stress, and inflammation have been confirmed with SGLT2 inhibitor treatment. Recent clinical studies have also begun to explore the effects of SGLT2 inhibitors on nondiabetic podocytopathies, such as focal segmental glomerulosclerosis. In this review, we summarize clinical and laboratory studies that focus on the podocyte-protective effects of SGLT2 inhibitors, exploring the potential for broader applications of this novel therapeutic agent in kidney disease. Keywords: Podocytes, podocytopathies, Renal protection, Sodium-glucose transporter 2 inhibitors References:
  1. Jongs N, Greene T, Chertow GM, et al. Effect of dapagliflozin on urinary albumin excretion in patients with chronic kidney disease with and without type 2 diabetes: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol 2021;9:755–766.
  2. EMPA-KIDNEY Collaborative Group. Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA- KIDNEY trial. Lancet Diabetes Endocrinol 2024;12:51–60.
  3. Jardine M, Zhou Z, Lambers Heerspink HJ, et al. Kidney, Cardiovascular, and safety outcomes of canagliflozin according to baseline albuminuria: a CREDENCE secondary analysis. Clin J Am Soc Nephrol 2021;16:384–395.
  4. DeFronzo RA, Reeves WB, Awad AS. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat Rev Nephrol 2021;17:319–334.
  5. Marton A, Kaneko T, Kovalik JP, et al. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat Rev Nephrol 2021;17:65–77.
  6. Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC. Cardiorenal protection of SGLT2 inhibitors-perspectives from metabolic reprogramming. EBioMedicine 2022;83:104215.
  7. Heerspink HJ, Perco P, Mulder S, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 2019;62:1154–1166.
  8. Jaikumkao K, Pongchaidecha A, Chueakula N, et al. Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats. Diabetes Obes Metab 2018;20:2617–2626.
  9. Kopp JB, Anders HJ, Susztak K, et al. Podocytopathies. Nat Rev Dis Primers 2020;6:68.
  10. Wheeler DC, Jongs N, Stefansson BV, et al. Safety and efficacy of dapagliflozin in patients with focal segmental glomerulo-sclerosis: a prespecified analysis of the dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DA- PA-CKD) trial. Nephrol Dial Transplant2022;37:1647–1656.
  11. Heerspink HJ, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med 2020;383:1436–1446.
  12. Tang C, Livingston MJ, Liu Z, Dong Z. Autophagy in kidney homeostasis and disease. Nat Rev Nephrol 2020;16:489–508. 13. Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell2010;40:280–293.
  13. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011;13:132–141.
  14. Hartleben B, Gödel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin In-vest2010;120:1084–1096.
  15. Korbut AI, Taskaeva IS, Bgatova NP, et al. SGLT2 inhibitor empagliflozin and DPP4 inhibitor linagliptin reactivate glomerular autophagy in db/db mice, a model of type 2 diabetes. Int J Mol Sci 2020;21:2987.
  16. Yang L, Liang B, Li J, et al. Dapagliflozin alleviates advanced glycation end product induced podocyte injury through AMPK/mTOR mediated autophagy pathway. Cell Signal 2022;90:110206.
  17. Lv X, Wang J, Zhang L, et al. Canagliflozin reverses Th1/Th2 imbalance and promotes podocyte autophagy in rats with membranous nephropathy. Front Immunol 2022;13:993869.
  18. Zhao XY, Li SS, He YX, et al. SGLT2 inhibitors alleviated podocyte damage in lupus nephritis by decreasing inflammation and enhancing autophagy. Ann Rheum Dis 2023;82:1328–1340.
  19. Han E, Shin E, Kim G, et al. Combining SGLT2 inhibition with a thiazolidinedione additively attenuate the very early phase of diabetic nephropathy progression in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2018;9:412.
  20. Hudkins KL, Li X, Holland AL, Swaminathan S, Alpers CE. Regression of diabetic nephropathy by treatment with empagliflozin in BTBR ob/ob mice. Nephrol Dial Trans- plant 2022;37:847–859.
  21. Cassis P, Locatelli M, Cerullo D, et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight 2018;3:e98720.
  22. Oraby MA, El-Yamany MF, Safar MM, Assaf N, Ghoneim HA. Dapagliflozin attenuates early markers of diabetic nerats. Biomed Pharmacother 2019;109:910–920.
  23. Tian Y, Chen XM, Liang XM, Wu XB, Yao CM. SGLT2 inhibitors attenuate nephrin loss and enhance TGF-β1 secretion in type 2 diabetes patients with albuminuria: a randomized clinical trial. Sci Rep 2022;12:15695.
  24. Ning L, Suleiman HY, Miner JH. Synaptopodin is dispensable for normal podocyte homeostasis but is protective in the context of acute podocyte injury. J Am Soc Nephrol2020;31:2815–2832.
  25. Ren L, Cui H, Wang Y, et al. The role of lipotoxicity in kidney disease: from molecular mechanisms to therapeutic prospects. Biomed Pharmacother 2023;161:114465.
  26. Szeto HH, Liu S, Soong Y, Alam N, Prusky GT, Seshan SV. Protection of mitochondria prevents high-fat diet-induced glomerulopathy and proximal tubular injury. Kidney Int 2016;90:997–1011.
  27. Daniele G, Xiong J, Solis-Herrera C, et al. Dapagliflozin enhances fat oxidation and ketone production in patients with type 2 diabetes. Diabetes Care 2016;39:2036–2041.
  28. Wallenius K, Kroon T, Hagstedt T, et al. The SGLT2 inhibitor dapagliflozin promotes systemic FFA mobilization, enhances hepatic β-oxidation, and induces ketosis. J Lipid Res 2022;63:100176.
  29. Zhu Q, Zhou Q, Luo XL, Zhang XJ, Li SY. Combination of canagliflozin and puerarin alleviates the lipotoxicity to diabetic kidney in mice. Korean J Physiol Pharmacol 2023;27:221–230.
  30. Wang D, Luo Y, Wang X, et al. The sodium-glucose co-transporter 2 inhibitor dapagliflozin prevents renal and liver disease in western diet induced obesity mice. Int J Mol Sci 2018;19:137.
  31. Ge M, Molina J, Kim JJ, et al. Empagliflozin reduces podocyte lipotoxicity in experimental Alport syn- drome. Elife 2023;12:e83353.
  32. Hasan R, Lasker S, Hasan A, et al. Canagliflozin ameliorates renal oxidative stress and inflammation by stimulating AMPK-Akt-eNOS pathway in the isoprenaline-induced oxidative stress model. Sci Rep 2020;10:14659.
  33. Zeng XC, Tian Y, Liang XM, Wu XB, Yao CM, Chen XM. SGLT2i relieve proteinuria in diabetic nephropathy patients potentially by inhibiting renal oxidative stress rather than through AGEs pathway. Diabetol Metab Syndr 2024;16:46.
  34. Kamezaki M, Kusaba T, Komaki K, et al. Comprehensive renoprotective effects of ipragliflozin on early diabetic nephropathy in mice. Sci Rep 2018;8:4029.
  35. You YH, Quach T, Saito R, Pham J, Sharma K. Metabolomics reveals a key role for fumarate in mediating the effects of NADPH oxidase 4 in diabetic kidney disease. J Am Soc Nephrol2016;27:466–481.
  36. Feijóo-Bandín S, Aragón-Herrera A, Otero-Santiago M, et al. Role of sodium-glucose co-transporter 2 inhibitors in the regulation of inflammatory processes in animal models. Int J Mol Sci 2022;23:5634.
  37. Xu J, Kitada M, Ogura Y, Liu H, Koya D. Dapagliflozin restores impaired autophagy and suppresses inflammation in high glucose-treated HK-2 cells. Cells 2021;10:1457.
  38. Hou Y, Lin S, Qiu J, et al. NLRP3 inflammasome negatively regulates podocyte autophagy in diabetic nephropathy. Biochem Biophys Res Commun 2020;521:791–798.
  39. Fu R, Guo C, Wang S, et al. Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis. Arthritis Rheumatol 2017;69:1636–1646.
  40. Dekkers CC, Petrykiv S, Laverman GD, Cherney DZ, Gan- sevoort RT, Heerspink HJ. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes Metab 2018;20:1988–1993.
Koshino A, Schechter M, Sen T, et al. Interleukin-6 and cardiovascular and kidney outcomes in patients with type 2 diabetes: new insights from CANVAS. Diabetes Care 2022;45:2644–2652.
  1. Fang Y, Chen B, Gong AY, et al. The ketone body β-hydro-xybutyrate mitigates the senescence response of glomerular podocytes to diabetic insults. Kidney Int 2021;100:1037–1053.
  2. Ferrannini E, Baldi S, Frascerra S, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 2016;65:1190–1195.
  3. Tomita I, Kume S, Sugahara S, et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metab2020;32:404–419.e6.
  4. Li J, Liu H, Takagi S, et al. Renal protective effects of empagliflozin via inhibition of EMT and aberrant glycolysis in proximal tubules. JCI Insight 2020;5:e129034.
  5. Wang Z, Zhai J, Zhang T, et al. Canagliflozin ameliorates epithelial-mesenchymal transition in high-salt diet-induced hypertensive renal injury through restoration of sirtuin 3 expression and the reduction of oxidative stress. Biochem Biophys Res Commun 2023;653:53–61.
  6. Guo R, Wang P, Zheng X, Cui W, Shang J, Zhao Z. SGLT2 inhibitors suppress epithelial-mesenchymal transition in podocytes under diabetic conditions via downregulating the IGF1R/PI3K pathway. Front Pharmacol 2022;13:897167.
  7. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016;375:323–334.
  8. Perkovic V, de Zeeuw D, Mahaffey KW, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CAN- VAS Program randomised clinical trials. Lancet Diabetes Endocrinol 2018;6:691–704.
  9. Mosenzon O, Wiviott SD, Cahn A, et al. Effects of dapa-gliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol 2019;7:606–617.
  10. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019;380:2295–2306.
  11. Fogo AB. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat Rev Nephrol2015;11:76–87.
  12. Wheeler DC, Stefánsson BV, Jongs N, et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol 2021;9:22–31.
  13. Rajasekeran H, Reich HN, Hladunewich MA, et al. Dapa-gliflozin in focal segmental glomerulosclerosis: a combined human-rodent pilot study. Am J Physiol Renal Physiol2018;314:F412–F422.
  14. Cherney DZ, Dekkers CC, Barbour SJ, et al. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol 2020;8:582–593.
  15. Boeckhaus J, Gross O. Sodium-glucose cotransporter-2 inhibitors in patients with hereditary podocytopathies, Alport syndrome, and FSGS: a case series to better plan a large-scale study. Cells 2021;10:1815.
  16. Liu J, Cui J, Fang X, et al. Efficacy and safety of dapagliflozin in children with inherited proteinuric kidney disease: a pilot study. Kidney Int Rep 2021;7:638–641.
  17. Wang H, Li T, Sun F, et al. Safety and efficacy of the SGLT2 inhibitor dapagliflozin in patients with systemic lupus erythematosus: a phase I/II trial. RMD Open 2022;8:e002686.
  18. Wood N, Straw S, Cheng CW, et al. Sodium-glucose cotransporter 2 inhibitors influence skeletal muscle pathology in patients with heart failure and reduced ejection fraction. Eur J Heart Fail 2024;26:925–935.
  19. El-Sayed N, Mostafa YM, AboGresha NM, Ahmed AA, Mahmoud IZ, El-Sayed NM. Dapagliflozin attenuates diabetic cardiomyopathy through erythropoietin up-regulation of AKT/JAK/MAPK pathways in streptozotocin-induced diabetic rats. Chem Biol Interact2021;347:109617.
  20. Lin K, Yang N, Luo W, et al. Direct cardio-protection of dapa-gliflozin against obesity-related cardiomyopathy via NHE1/ MAPK signaling. Acta Pharmacol Sin 2022;43:2624–2635.

Published
2025

How to Cite

Buchun Jiang, Zhiwen Cheng, Dongjie Wang, Fei Liu, Jingjing Wang, Haidong Fu, Jianhua Mao (2025). Unveiling the podocyte-protective effect of sodium-glucose cotransporter-2 inhibitors. Diabetes Obesity Metabolic Syndrome. 3(14), 24-34.