Incretin-based therapies for the management of cardiometabolic disease in the clinic: Past, present, and future

James P. Psaltis
Adelaide Medical School, The University of Adelaide, Adelaide, Australia

Jessica A. Marathe
Adelaide Medical School, The University of Adelaide, Adelaide, Australia
Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical
Research Institute, Adelaide, Australia
Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia

Mau T. Nguyen
Adelaide Medical School, The University of Adelaide, Adelaide, Australia
Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical
Research Institute, Adelaide, Australia
Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia

Richard Le
Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical
Research Institute, Adelaide, Australia
College of Medicine and Public Health, Flinders University, Adelaide, Australia

Christina A. Bursill
Adelaide Medical School, The University of Adelaide, Adelaide, Australia
Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical
Research Institute, Adelaide, Australia

Chinmay S. Marathe
Adelaide Medical School, The University of Adelaide, Adelaide, Australia
Department of Endocrinology, Central Adelaide Local Health Network, Adelaide, Australia

Adam J. Nelson
Adelaide Medical School, The University of Adelaide, Adelaide, Australia
Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical
Research Institute, Adelaide, Australia
Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia

Peter J. Psaltis
Adelaide Medical School, The University of Adelaide, Adelaide, Australia
Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical
Research Institute, Adelaide, Australia
Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia

Abstract

Among newer classes of drugs for type 2 diabetes mellitus (T2DM), glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are incretin-based agents that lower both blood sugar levels and promote weight loss. They do so by activating pancreatic GLP-1 receptors (GLP-1R) to promote glucose-dependent insulin release and inhibit glucagon secretion. They also act on receptors in the brain and gastrointestinal tract to suppress appetite, slow gastric emptying, and delay glucose absorption. Phase 3 clinical trials have shown that GLP-1 RAs improve cardiovascular outcomes in the setting of T2DM or over- weight/obesity in people who have, or are at high risk of having atherosclerotic cardiovascular disease. This is largely driven by reductions in ischemic events, although emerging evidence also supports benefits in other cardiovascular conditions, such as heart failure with preserved ejection fraction. The success of GLP-1 RAs has also seen the evolution of other incretin therapies. Tirzepatide has emerged as a dual glucose- dependent insulinotropic polypeptide (GIP)/GLP-1 RA, with more striking effects on glycemic control and weight reduction than those achieved by isolated GLP-1R agonism alone. This consists of lowering glycated hemoglobin levels by more than 2 % and weight loss exceeding 15 % from baseline. Here, we review the pharmacological properties of GLP-1 RAs and tirzepatide and discuss their clinical effectiveness for T2DM and overweight/obesity, including their ability to reduce adverse cardiovascular outcomes. We also delve into the mechanistic basis for these cardioprotective effects and consider the next steps in implementing existing and future incretin-based therapies for the broader management of cardiometabolic disease.

Key words: atherosclerosis, diabetes, incretins, obesity, tirzepatide

  1. Mensah GA, Roth GA, Fuster V. The global burden of cardiovascular diseases and risk factors. J Am Coll Cardiol. 2019;74:2529‐2532.
  2. Amini M, Zayeri F, Salehi M. Trend analysis of cardiovascular disease mortality, incidence, and mortality‐to‐incidence ratio: results from global burden of disease study 2017. BMC Public Health. 2021;21:401.
  3. Lobstein T, Brinsden H, Neveux M. World Obesity Atlas. 2022:1‐289. https://s3-eu-west-1.amazonaws.com/woffiles/World_Obesity_Atlas_2022.pdf
  4. International Diabetes Federation. IDF Diabetes Atlas. 2021. https://diabetesatlas.org/data/en/world/
  5. Cavallari I, Bhatt DL, Steg PG, et al. Causes and risk factors for death in diabetes. J Am Coll Cardiol. 2021;77:1837‐1840.
  6. Wang H, Liu J, Feng Y, Ma A, Wang T. The burden of cardiovascular diseases attributable to metabolic risk factors and its change from 1990 to 2019: a systematic analysis and prediction. Front Epidemiol. 2023;3:1048515.
  7. Rosenstock J, Wysham C, Frías JP, et al. Efficacy and safety of a novel dual GIP and GLP‐1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS‐1): a double‐blind, randomised, phase 3 trial. Lancet. 2021;398:143‐155.
  8. Frías JP, Davies MJ, Rosenstock J, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med. 2021;385:503‐515.
  9. Ludvik B, Giorgino F, Jódar E, et al. Once‐weekly tirzepatide versus once‐daily insulin degludec as add‐on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS‐3): a randomised, open‐label, parallel‐group, phase 3 trial. Lancet. 2021;398:583‐598.
  10. Del Prato S, Kahn SE, Pavo I, et al Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS‐4): a randomised, open‐label, parallel‐group, multicentre, phase 3 trial. Lancet. 2021;398:1811‐1824
  11. Dahl D, Onishi Y, Norwood P, et al. Effect of subcutaneous tirzepatide vs placebo added to titrated insulin glargine on glycemic control in patients with type 2 diabetes: the SURPASS‐5 randomized clinical trial. JAMA. 2022;327:534‐545.

  12. Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 2022;387:205‐216.

  13. Nauck MA, D‘Alessio DA. Tirzepatide, a dual GIP/GLP‐1 receptor co‐agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc Diabetol. 2022;21:169.

  14. Keramat SA, Alam K, Al‐Hanawi MK, Gow J, Biddle SJH, Hashmi R. Trends in the prevalence of adult overweight and obesity in Australia, and its association with geographic remoteness. Sci Rep. 2021;11:11320.

  15. Davis TME, Hunt K, McAullay D, et al. Continuing disparities in cardiovascular risk factors and complications between aboriginal and Anglo‐Celt Australians with type 2 diabetes. Diabetes Care. 2012;35:2005‐2011.
  16. Imai C, Hardie RA, Franco GS, et al. Harnessing the potential of electronic general practice pathology data in Australia: an examination of the quality use of pathology for type 2 diabetes patients. Int J Med Inform. 2020;141:104189.
  17. Overweight & Obesity Statistics. National Institute of Diabetes and Digestive and Kidney Diseases; 2021. https://www.niddk.nih.gov/health-information/health-statistics/overweight-obesity
  18. Ward ZJ, Bleich SN, Cradock AL, et al. Projected U.S. State‐level prevalence of adult obesity and severe obesity. N Engl J Med. 2019;381:2440‐2450.
  19. Tham KW, Abdul Ghani R, Cua SC, et al. Obesity in south and southeast Asia—a new consensus on care and management. Obesity Reviews. 2023;24:e13520.
  20. Piché ME, Tchernof A, Després JP. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res. 2020;126:1477‐1500.
  21. Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007‐2017. Cardiovasc Diabetol. 2018;17:83.
  22. Wen Y, Leake DS. Low density lipoprotein undergoes oxidation within lysosomes in cells. Circ Res. 2007;100:1337‐1343.
  23. Mathieu P, Pibarot P, Despres JP. Metabolic syndrome: the danger signal in atherosclerosis. Vasc Health Risk Manag. 2006;2:285‐302.
  24. Muscogiuri G, Verde L, Sulu C, et al. Mediterranean diet and obesity‐related disorders: what is the evidence? Curr Obes Rep. 2022;11:287‐304.
  25. Leblanc ES, O’Connor E, Whitlock EP, Patnode CD, Kapka T. Effectiveness of primary care‐relevant treatments for obesity in adults: a systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med. 2011;155:434‐447.
  26. Rao AD, Kuhadiya N, Reynolds K, Fonseca VA. Is the combination of sulfonylureas and metformin associated with an increased risk of cardiovascular disease or all‐cause mortality? Diabetes Care. 2008;31:1672‐1678.
  27. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545‐2559.
  28. Marso SP, Daniels GH, Brown‐Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311‐322.
  29. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834‐1844.
  30. Husain M, Birkenfeld AL, Donsmark M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019;381:841‐851.
  31. Kosiborod MN, Abildstrøm SZ, Borlaug BA, et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N Engl J Med. 2023;389:1069‐1084.
  32. Nelson AJ, O’Brien EC, Kaltenbach LA, et al. Use of lipid‐, blood pressure‐, and glucose‐lowering pharmacotherapy in patients with type 2 diabetes and atherosclerotic cardiovascular disease. JAMA Netw Open. 2022;5:e2148030.
  33. Min T, Bain SC. The role of tirzepatide, dual GIP and GLP‐1 receptor agonist, in the management of type 2 diabetes: the SURPASS clinical trials. Diabetes Ther. 2021;12:143‐157.
  34. Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60: 470‐512.
  35. Baggio LL, Drucker DJ. Glucagon‐like peptide‐1 receptors in the brain: controlling food intake and body weight. J Clin Invest. 2014;124:4223‐4226.
  36. Baggio LL, Yusta B, Mulvihill EE, et al. GLP‐1 receptor expression within the human heart. Endocrinology. 2018;159:1570‐1584.
  37. Mayendraraj A, Rosenkilde MM, Gasbjerg LS. GLP‐1 and GIP receptor signaling in beta cells—a review of receptor interactions and co‐stimulation. Peptides. 2022;151:170749.
  38. Oeseburg H, de Boer RA, Buikema H, van der Harst P, van Gilst WH, Silljé HHW. Glucagon‐like peptide 1 prevents reactive oxygen species‐induced endothelial cell senescence through the activation of protein kinase A. Arterioscler Thromb Vasc Biol. 2010;30:1407‐1414.
  39. Li J, Zheng J, Wang S, Lau HK, Fathi A, Wang Q. Cardiovascular benefits of native GLP‐1 and its metabolites: an indicator for GLP‐1‐therapy strategies. Front Physiol. 2017;8:15.
  40. Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. Glucagon‐like peptide‐1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Failure. 2006;12:694‐699.
  41. El K, Gray SM, Capozzi ME, et al. GIP mediates the incretin effect and glucose tolerance by dual actions on α cells and β cells. Sci Adv. 2021;7:eabf1948.
  42. Christensen M, Vedtofte L, Holst JJ, Vilsbøll T, Knop FK. Glucose‐dependent insulinotropic polypeptide. Diabetes. 2011;60:3103‐3109.
  43. Yamane S, Harada N, Inagaki N. Mechanisms of fat‐induced gastric inhibitory polypeptide/glucose‐dependent insulinotropic polypeptide secretion from K cells. J Diabetes Investig. 2016;7(suppl 1):20‐26.
  44. Fukuda M. The role of GIP receptor in the CNS for the pathogenesis of obesity. Diabetes. 2021;70:1929‐1937.
  45. Killion EA, Lu SC, Fort M, Yamada Y, Véniant MM, Lloyd DJ. Glucose‐dependent insulinotropic polypeptide receptor therapies for the treatment of obesity, do agonists = antagonists? Endocr Rev. 2020;41:1‐21.
  46. Heimbürger SM, Bergmann NC, Augustin R, Gasbjerg LS, Christensen MB, Knop FK. Glucose‐dependent insulinotropic polypeptide (GIP) and cardiovascular disease. Peptides. 2020;125:170174.
  47. Nauck M, Stöckmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non‐insulin‐dependent) diabetes. Diabetologia. 1986;29:46‐52.
  48. Gasbjerg LS, Helsted MM, Hartmann B, et al. Separate and combined glucometabolic effects of endogenous glucosedependent insulinotropic polypeptide and glucagon‐like peptide 1 in healthy individuals. Diabetes. 2019;68:906‐917.
  49. Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon‐like peptide 1 [7‐36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type‐2 diabetes mellitus. J Clin Invest. 1993;91:301‐307.
  50. May JM, Williams RH. The effect of endogenous gastric inhibitory polypeptide on glucose‐induced insulin secretion in mild diabetes. Diabetes. 1978;27:849‐855.
  51. Ross SA, Dupre J. Effects of ingestion of triglyceride or galactose on secretion of gastric inhibitory polypeptide and on responses to intravenous glucose in normal and diabetic subjects. Diabetes. 1978;27:327‐333.
  52. Amland PF, Jorde R, Aanderud S, Burhol PG, Giercksky KE. Effects of intravenously infused porcine GIP on serum insulin, plasma C‐peptide, and pancreatic polypeptide in non‐insulin‐dependent diabetes in the fasting state. Scand J Gastroenterol. 1985;20:315‐320.
  53. Lynn FC, Thompson SA, Pospisilik JA, et al. A novel pathway for regulation of glucose‐dependent insulinotropic polypeptide receptor expression in β‐cells. FASEB J. 2003;17:91‐93.
  54. Wondmkun YT. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes Metab Syndr Obes. 2020;13:3611‐3616.
  55. Calanna S, Christensen M, Holst JJ, et al. Secretion of glucose‐dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetes Care. 2013;36:3346‐3352.
  56. Krarup T, Saurbrey N, Moody AJ, Kühl C, Madsbad S. Effect of porcine gastric inhibitory polypeptide on β‐cell function in type I and type II diabetes mellitus. Metabolism. 1987;36:677‐682.
  57. Højberg PV, Vilsbøll T, Rabøl R, et al. Four weeks of near‐normalisation of blood glucose improves the insulin response to glucagon‐like peptide‐1 and glucose‐dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia. 2009;52:199‐207.
  58. Vilsbøll T, Krarup T, Sonne J, et al. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab. 2003;88:2706‐2713.
  59. Xu G, Kaneto H, Laybutt DR, et al. Downregulation of GLP‐1 and GIP receptor expression by hyperglycemia. Diabetes. 2007;56:1551‐1558.
  60. Boer GA, Holst JJ. Incretin hormones and type 2 diabetes‐mechanistic insights and therapeutic approaches. Biology. 2020;9:473.
  61. Anandhakrishnan A, Korbonits M. Glucagon‐like peptide 1 in the pathophysiology and pharmacotherapy of clinical obesity. World J Diabetes. 2016;7:572‐598.
  62. Skibicka KP. The central GLP‐1: implications for food and drug reward. Front Neurosci. 2013;7:181.
  63. Eckel RH, Fujimoto WY, Brunzell JD. Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes. Diabetes. 1979;28:1141‐1142.
  64. Miyawaki K, Yamada Y, Ban N, et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med. 2002;8:738‐742.
  65. Pedrosa MR, Franco DR, Gieremek HW, et al. GLP‐1 agonist to treat obesity and prevent cardiovascular disease: what have we achieved so far? Curr Atheroscler Rep. 2022;24:867‐884.
  66. Knudsen LB, Nielsen PF, Huusfeldt PO, et al. Potent derivatives of glucagon‐like peptide‐1 with pharmacokinetic properties suitable for once daily administration. J Med Chem. 2000;43:1664‐1669.
  67. Holst JJ. From the incretin concept and the discovery of GLP‐1 to today’s diabetes therapy. Front Endocrinol. 2019;10:260.
  68. Nauck MA, Quast DR, Wefers J, Meier JJ. GLP‐1 receptor agonists in the treatment of type 2 diabetes ‐ state of the art. Mol Metab. 2021;46:101102.
  69. Leon N, LaCoursiere R, Yarosh D, Patel RS. Lixisenatide (Adlyxin): a once‐daily incretin mimetic injection for type‐2 diabetes. P & T. 2017;42:676‐711.
  70. Meier JJ. GLP‐1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8:728‐742.
  71. Cornell S. A review of GLP‐1 receptor agonists in type 2 diabetes: a focus on the mechanism of action of onceweekly agents. J Clin Pharm Ther. 2020;45(suppl 1):17‐27.
  72. Arslanian SA, Hannon T, Zeitler P, et al. Once‐weekly dulaglutide for the treatment of youths with type 2 diabetes. N Engl J Med. 2022;387:433‐443.
  73. Woodward HN, Anderson SL. Once‐weekly albiglutide in the management of type 2 diabetes: patient considerations. Patient Prefer Adherence. 2014;8:789‐803.
  74. Capehorn M, Ghani Y, Hindsberger C, Johansen P, Jódar E. Once‐weekly semaglutide reduces HbA(1c) and body weight in patients with type 2 diabetes regardless of background common OAD: a subgroup analysis from SUSTAIN 2‐4 and 10. Diabetes Ther. 2020;11:1061‐1075.
  75. Ahmann A, Rodbard HW, Rosenstock J, et al. Efficacy and safety of liraglutide versus placebo added to basal insulin analogues (with or without metformin) in patients with type 2 diabetes: a randomized, placebo‐controlled trial. Diabetes, Obes Metab. 2015;17:1056‐1064.
  76. Drucker DJ. GLP‐1 physiology informs the pharmacotherapy of obesity. Mol Metab. 2022;57:101351.
  77. Jensterle M, Rizzo M, Haluzík M, Janež A. Efficacy of GLP‐1 RA approved for weight management in patients with or without diabetes: a narrative review. Adv Ther. 2022;39:2452‐2467.
  78. Astrup A, Rössner S, Van Gaal L, et al. Effects of liraglutide in the treatment of obesity: a randomised, double‐blind, placebo‐controlled study. Lancet. 2009;374:1606‐1616.
  79. Davies M, Færch L, Jeppesen OK, et al. Semaglutide 2.4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double‐blind, double‐dummy, placebo‐controlled, phase 3 trial. Lancet. 2021;397:971‐984.
  80. Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373:2247‐2257.
  81. Holman RR, Bethel MA, Mentz RJ, et al. Effects of once‐weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377:1228‐1239.
  82. Hernandez AF, Green JB, Janmohamed S, et al Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double‐blind, randomised placebo‐controlled trial. Lancet. 2018;392:1519‐1529.
  83. Gerstein HC, Colhoun HM, Dagenais GR, et al Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double‐blind, randomised placebo‐controlled trial. Lancet. 2019;394:121‐130.
  84. Gerstein HC, Sattar N, Rosenstock J, et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N Engl J Med. 2021;385:896‐907.
  85. McGuire DK, Busui RP, Deanfield J, et al. Effects of oral semaglutide on cardiovascular outcomes in individuals with type 2 diabetes and established atherosclerotic cardiovascular disease and/or chronic kidney disease: design and baseline characteristics of SOUL, a randomized trial. Diabetes, Obes Metab. 2023;25:1932‐1941.
  86. Sattar N, Lee MMY, Kristensen SL, et al. Cardiovascular, mortality, and kidney outcomes with GLP‐1 receptor agonists in patients with type 2 diabetes: a systematic review and meta‐analysis of randomised trials. Lancet Diabetes Endocrinol. 2021;9:653‐662.
  87. Ryan DH, Lingvay I, Colhoun HM, et al. Semaglutide effects on cardiovascular outcomes in people with overweight or obesity (SELECT) rationale and design. Am Heart J. 2020;229:61‐69.
  88. Lingvay I, Brown‐Frandsen K, Colhoun HM, et al. Semaglutide for cardiovascular event reduction in people with overweight or obesity: SELECT study baseline characteristics. Obesity. 2023;31:111‐122.
  89. Lincoff AM, Brown‐Frandsen K, Colhoun HM, et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med. 2023;389:2221‐2232.
  90. Tang B, Zhang Y, Wang Y, Wang X, An Z, Yu X. Effect of bariatric surgery on long‐term cardiovascular outcomes: a systematic review and meta‐analysis of population‐based cohort studies. Surg Obes Relat Dis. 2022;18:1074‐1086.
  91. Buse JB, Rosenstock J, Sesti G, et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26‐week randomised, parallel‐group, multinational, open‐label trial (LEAD‐6). Lancet. 2009;374:39‐47.
  92. Drucker DJ, Buse JB, Taylor K, et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open‐label, non‐inferiority study. Lancet. 2008;372:1240‐1250.
  93. Sposito AC, Berwanger O, de Carvalho LSF, Saraiva JFK. GLP‐1RAs in type 2 diabetes: mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data. Cardiovasc Diabetol. 2018;17:157.
  94. Rakipovski G, Rolin B, Nøhr J, et al. The GLP‐1 analogs liraglutide and semaglutide reduce atherosclerosis in ApoE (‐/‐) and LDLr(‐/‐) mice by a mechanism that includes inflammatory pathways. JACC. 2018;3:844‐857.
  95. Pi‐Sunyer X, Astrup A, Fujioka K, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373:11‐22.
  96. Zobel EH, Ripa RS, von Scholten BJ, et al. Effect of liraglutide on expression of inflammatory genes in type 2 diabetes. Sci Rep. 2021;11:18522.
  97. Tashiro Y, Sato K, Watanabe T, et al. A glucagon‐like peptide‐1 analog liraglutide suppresses macrophage foam cell formation and atherosclerosis. Peptides. 2014;54:19‐26.
  98. Garczorz W, Gallego‐Colon E, Kosowska A, et al Exenatide exhibits anti‐inflammatory properties and modulates endothelial response to tumor necrosis factor alpha‐mediated activation. Cardiovasc Ther. 2018;36:1‐8.
  99. Bourdillon MC, Poston RN, Covacho C, Chignier E, Bricca G, McGregor JL. ICAM‐1 deficiency reduces atherosclerotic lesions in double‐knockout mice (ApoE(‐/‐)/ICAM‐1(‐/‐)) fed a fat or a chow diet. Arterioscler Thromb Vasc Biol. 2000;20:2630‐2635.
  100. Watanabe N, Ikeda U. Matrix metalloproteinases and atherosclerosis. Curr Atheroscler Rep. 2004;6:112‐120.
  101. Hamal S, Cherukuri L, Shaikh K, et al. Effect of semaglutide on coronary atherosclerosis progression in patients with type II diabetes: rationale and design of the semaglutide treatment on coronary progression trial. Coron Artery Dis. 2020;31:306‐314.
  102. Ripa RS, Zobel EH, von Scholten BJ, et al. Effect of liraglutide on arterial inflammation assessed as [(18)F]FDG uptake in patients with type 2 diabetes: a randomized, double‐blind, placebo‐controlled trial. Circ Cardiov Imaging. 2021;14:e012174.
  103. Bohne LJ, Jansen HJ, Dorey TW, et al. Glucagon‐like peptide‐1 protects against atrial fibrillation and atrial remodeling in type 2 diabetic mice. JACC. 2023;8:922‐936.
  104. Filippatos TD, Panagiotopoulou TV, Elisaf MS. Adverse effects of GLP‐1 receptor agonists. Rev Diabetic Stud. 2014;11:202‐230.
  105. Marathe CS, Rayner CK, Jones KL, Horowitz M. Effects of GLP‐1 and incretin‐based therapies on gastrointestinal motor function. Exp Diabetes Res. 2011;2011:279530.
  106. Bethel MA, Diaz R, Castellana N, Bhattacharya I, Gerstein HC, Lakshmanan MC. HbA(1c) change and diabetic retinopathy during GLP‐1 receptor agonist cardiovascular outcome trials: a meta‐analysis and meta‐regression. Diabetes Care. 2021;44:290‐296.
  107. Bezin J, Gouverneur A, Pénichon M, et al. GLP‐1 receptor agonists and the risk of thyroid cancer. Diabetes Care. 2023;46:384‐390.
  108. Cao C, Yang S, Zhou Z. GLP‐1 receptor agonists and pancreatic safety concerns in type 2 diabetic patients: data from cardiovascular outcome trials. Endocrine. 2020;68:518‐525.
  109. Sodhi M, Rezaeianzadeh R, Kezouh A, Etminan M. Risk of gastrointestinal adverse events associated with glucagonlike peptide‐1 receptor agonists for weight loss. JAMA. 2023;330:1795‐1797.
  110. Nauck MA, Niedereichholz U, Ettler R, et al. Glucagon‐like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol Endocrinol Metab. 1997;273:E981‐E988.
  111. Umapathysivam MM, Lee MY, Jones KL, et al. Comparative effects of prolonged and intermittent stimulation of the glucagon‐like peptide 1 receptor on gastric emptying and glycemia. Diabetes. 2014;63:785‐790.
  112. Horowitz M, Rayner CK, Marathe CS, Wu T, Jones KL. Glucagon‐like peptide‐1 receptor agonists and the appropriate measurement of gastric emptying. Diabetes, Obes Metab. 2020;22:2504‐2506.
  113. Maselli D, Atieh J, Clark MM, et al. Effects of liraglutide on gastrointestinal functions and weight in obesity: a randomized clinical and pharmacogenomic trial. Obesity. 2022;30:1608‐1620.
  114. Jones KL, Huynh LQ, Hatzinikolas S, et al. Exenatide once weekly slows gastric emptying of solids and liquids in healthy, overweight people at steady‐state concentrations. Diabetes, Obes Metab. 2020;22:788‐797.
  115. Linnebjerg H, Park S, Kothare PA, et al. Effect of exenatide on gastric emptying and relationship to postprandial glycemia in type 2 diabetes. Regul Pept. 2008;151:123‐129.
  116. Jensterle M, Ferjan S, Ležaič L, et al. Semaglutide delays 4‐hour gastric emptying in women with polycystic ovary syndrome and obesity. Diabetes, Obes Metab. 2023;25:975‐984.
  117. Kalas MA, Galura GM, McCallum RW. Medication‐induced gastroparesis: a case report. J Investig Med High Impact Case Rep. 2021;9:232470962110519.
  118. American Society of Anesthesiologists. Consensus‐based guidance on preoperative management of patients (adults and children) on glucagon‐like peptide‐1 (GLP‐1) receptor agonists. 2023. https://www asahq org/about-asa/newsroom/news-releases/2023/06/american-society-of-anesthesiologists-consensus-based-guidance-on preoperative
  119. Ishii M, Nakamura T, Kasai F, Onuma T, Baba T, Takebe K. Altered postprandial insulin requirement in IDDM patients with gastroparesis. Diabetes Care. 1994;17:901‐903.
  120. Marathe CS, Marathe JA, Rayner CK, Kar P, Jones KL, Horowitz M. Hypoglycaemia and gastric emptying. Diabetes, Obes Metab. 2019;21:491‐498.
  121. Baggio LL, Drucker DJ. Glucagon‐like peptide‐1 receptor co‐agonists for treating metabolic disease. Mol Metab. 2021;46:101090.
  122. Willard FS, Douros JD, Gabe MBN, et al. Tirzepatide is an imbalanced and biased dual GIP and GLP‐1 receptor agonist. JCI Insight. 2020;5:e140532sar.
  123. Meier JJ, Nauck MA, Schmidt WE, Gallwitz B. Gastric inhibitory polypeptide: the neglected incretin revisited. Regul Pept. 2002;107:1‐13.
  124. Beck B, Max JP. Hypersensitivity of adipose tissue to gastric inhibitory polypeptide action in the obese zucker rat. Cell Mol Biol. 1987;33:555‐562.
  125. Irwin N, Flatt PR. Therapeutic potential for GIP receptor agonists and antagonists. Best Pract Res Clin Endocrinol Metab. 2009;23:499‐512.
  126. Borner T, Geisler CE, Fortin SM, et al. GIP receptor agonism attenuates GLP‐1 receptor agonist‐induced nausea and emesis in preclinical models. Diabetes. 2021;70:2545‐2553.
  127. Zhang Q, Delessa CT, Augustin R, et al. The glucose‐dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS‐GIPR signaling. Cell Metab. 2021;33:833‐844.
  128. Killion EA, Wang J, Yie J, et al. Anti‐obesity effects of GIPR antagonists alone and in combination with GLP‐1R agonists in preclinical models. Sci Transl Med. 2018;10:eaat3392.
  129. Karagiannis T, Malandris K, Avgerinos I, et al. Subcutaneously administered tirzepatide vs semaglutide for adults with type 2 diabetes: a systematic review and network meta‐analysis of randomised controlled trials. Diabetologia. 2024;67:1206‐1222.
  130. Garvey WT, Frias JP, Jastreboff AM, et al. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT‐2): a double‐blind, randomised, multicentre, placebo‐controlled, phase 3 trial. Lancet. 2023;402:613‐626.
  131. Wadden TA, Chao AM, Machineni S, et al. Tirzepatide after intensive lifestyle intervention in adults with overweight or obesity: the SURMOUNT‐3 phase 3 trial. Nat Med. 2023;29:2909‐2918.
  132. Aronne LJ, Sattar N, Horn DB, et al. Continued treatment with tirzepatide for maintenance of weight reduction in adults with obesity: the SURMOUNT‐4 randomized clinical trial. JAMA. 2024;331:38‐48.
  133. Wilding JPH, Batterham RL, Davies M, et al. Weight regain and cardiometabolic effects after withdrawal of semaglutide: the STEP 1 trial extension. Diabetes, Obes Metab. 2022;24:1553‐1564.
  134. Sattar N, McGuire DK, Pavo I, et al. Tirzepatide cardiovascular event risk assessment: a pre‐specified meta‐analysis. Nat Med. 2022;28:591‐598.
  135. Kanbay M, Copur S, Siriopol D, et al. Effect of tirzepatide on blood pressure and lipids: a meta‐analysis of randomized controlled trials. Diabetes Obes Metab. 2023;25:3766‐3778.
  136. van Eenige R, Ying Z, Tramper N, et al. Combined glucose‐dependent insulinotropic polypeptide receptor and glucagon‐like peptide‐1 receptor agonism attenuates atherosclerosis severity in APOE*3‐Leiden.CETP mice. Atherosclerosis. 2023;372:19‐31.
  137. Wilson JM, Lin Y, Luo MJ, et al. The dual glucose‐dependent insulinotropic polypeptide and glucagon‐like peptide‐1receptor agonist tirzepatide improves cardiovascular risk biomarkers in patients with type 2 diabetes: a post hoc analysis. Diabetes Obes Metab. 2022;24:148‐153.
  138. Figtree GA, Adamson PD, Antoniades C, et al. Noninvasive plaque imaging to accelerate coronary artery disease drug development. Circulation. 2022;146:1712‐1727.
  139. Montarello NJ, Nelson AJ, Verjans J, Nicholls SJ, Psaltis PJ. The role of intracoronary imaging in translational research. Cardiovasc Diagn Ther. 2020;10:1480‐1507.
  140. Sardar MB, Nadeem ZA, Babar M. Tirzepatide: a novel cardiovascular protective agent in type 2 diabetes mellitus and obesity. Curr Probl Cardiol. 2024;49:102489.
  141. Frias JP, Nauck MA, Van J, et al. Efficacy and tolerability of tirzepatide, a dual glucose‐dependent insulinotropic peptide and glucagon‐like peptide‐1 receptor agonist in patients with type 2 diabetes: a 12‐week, randomized, double‐blind, placebo‐controlled study to evaluate different dose‐escalation regimens. Diabetes Obes Metab. 2020;22:938‐946.
  142. Gallwitz B. Clinical perspectives on the use of the GIP/GLP‐1 receptor agonist tirzepatide for the treatment of type‐2 diabetes and obesity. Front Endocrinol. 2022;13:1004044.
  143. Trujillo J. Safety and tolerability of once‐weekly GLP‐1 receptor agonists in type 2 diabetes. J Clin Pharm Ther. 2020;45(suppl 1):43‐60.
  144. Martin CK, Ravussin E, Sanchez‐‐Delgado G, et al. 128‐OR: the effect of tirzepatide during weight loss on food intake, appetite, food preference, and food craving in people with obesity. Diabetes. 2023;72(supplment 1):128‐OR.
  145. Dekker TJA. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 2022;387:1433‐1435.
  146. Pownall HJ, Schwartz AV, Bray GA, et al. Changes in regional body composition over 8 years in a randomized lifestyle trial: the look AHEAD study. Obesity. 2016;24:1899‐1905.
  147. Moayeri A, Mohamadpour M, Mousavi S, Shirzadpour E, Mohamadpour S, Amraei M. Fracture risk in patients with type 2 diabetes mellitus and possible risk factors: a systematic review and meta‐analysis. Ther Clin Risk Manag. 2017;13:455‐468.
  148. Cai T, Li H, Jiang L, et al. Effects of GLP‐1 receptor agonists on bone mineral density in patients with type 2 diabetes mellitus: a 52‐Week clinical study. BioMed Res Int. 2021;2021:336130
  149. Nicholls SJ, Bhatt DL, Buse JB, et al. Comparison of tirzepatide and dulaglutide on major adverse cardiovascular events in participants with type 2 diabetes and atherosclerotic cardiovascular disease: SURPASS‐CVOT design and baseline characteristics. Am Heart J. 2024;267:1‐11.
  150. Middeldorp ME, Pathak RK, Meredith M, et al. PREVEntion and regReSsive effect of weight‐loss and risk factor modification on atrial fibrillation: the REVERSE‐AF study. EP Europace. 2018;20:1929‐1935.
  151. Ariyaratnam JP, Elliott AD, Mishima RS, Gallagher C, Lau DH, Sanders P. Heart failure with preserved ejection fraction: an alternative paradigm to explain the clinical implications of atrial fibrillation. Heart Rhythm O2. 2021;2:771‐783.
  152. Jastreboff AM, Kaplan LM, Frías JP, et al. Triple‐hormone‐receptor agonist retatrutide for obesity—a phase 2 trial. N Engl J Med. 2023;389:514‐526.
  153. Rosenstock J, Frias J, Jastreboff AM, et al. Retatrutide, a GIP, GLP‐1 and glucagon receptor agonist, for people with type 2 diabetes: a randomised, double‐blind, placebo and active‐controlled, parallel‐group, phase 2 trial conducted in the USA. Lancet. 2023;402:529‐544.
  154. Bluher M, Rosenstock J, Hoefler J, Manuel R, Hennige AM. Dose‐response effects on HbA(1c) and bodyweight reduction of survodutide, a dual glucagon/GLP‐1 receptor agonist, compared with placebo and open‐label semaglutide in people with type 2 diabetes: a randomised clinical trial. Diabetologia. 2024;67:470‐482.
  155. Jain M, Carlson G, Cook W, et al. Randomised, phase 1, dose‐finding study of MEDI4166, a PCSK9 antibody and GLP‐1 analogue fusion molecule, in overweight or obese patients with type 2 diabetes mellitus. Diabetologia. 2019;62:373‐386.
  156. Isaacs DM, Kruger DF, Spollett GR. Optimizing therapeutic outcomes with oral semaglutide: a patient‐centered approach. Diabetes Spectrum. 2021;34:7‐19.
  157. Eli Lilly and Company. Mounjaro (tirzepatide) injection prescribing information. 2022. https://pi.lilly.com/us/mounjaro-uspi.pdf?s=pi
  158. Kosmas CE, Bousvarou MD, Papakonstantinou EJ, et al. Novel pharmacological therapies for the management of hyperlipoproteinemia(a). Int J Mol Sci. 2023;24:13622.

 

Published
2024

How to Cite

James P. Psaltis, Jessica A. Marathe, Mau T. Nguyen, Richard Le, Christina A. Bursill, Chinmay S. Marathe, Adam J. Nelson, Peter J. Psaltis (2024). Incretin-based therapies for the management of cardiometabolic disease in the clinic: Past, present, and future 13(5), (8-38)