Doms № 5 -2023

Перспективи застосування інгібіторів натрійзалежного котранспортера глюкози 2-го типу в осіб із стеатотичною хворобою печінки, пов’язаною

з метаболічною дисфункцією (огляд літератури)

Костіцька І. О., Протас Н. М., Петровська Л. Р.

Резюме

Зважаючи на глобальну поширеність у близько 30 % світової популяції, стеатотична хвороба печінки, пов’язана з метаболічною дисфункцією (МАЖХП), визнана серйозною проблемою охорони здоров’я. Найпоширенішим хронічним захворюванням печінки є неалкогольний стеатогепатит (НАСГ), який сягає масштабів епідемії серед 12–21 % осіб із цукровим діабетом (ЦД) 2-го типу. При коморбідності ЦД 2-го типу, атеросклеротичних серцево-судинних захворювань (АССЗ), вісцерального ожиріння (ВО), синдрому інсулінорезистентності (ІР), частота МАЖХП становить 70 %. Саме тому провідне значення має сучасний, комплексний, пацієнт-орієнтований підхід до терапії осіб із МАЖХП, який передбачає одночасне лікування кілька розладів, шляхом попередження взаємодії між окремими нозологіями, що лежать в основі НАСГ у пацієнтів з ЦД 2-го типу. Зростаючий тягар захворюваності, терапевтична інертність лікарів первинної ланки та вузькопрофільних спеціалістів — гастроентерологів, ендокринологів щодо ранньої діагностики НАСГ в осіб з ЦД 2-го типу та ВО, веде до того, що у більшості випадків прояви МАЖХП залишаються не у повному обсязі пролікованими. На сьогодні інноваційним класом цукрознижувальних препаратів є інгібітори натрійзалежного котранспортера глюкози 2-го типу (іНЗКТГ2), які удосконалили глюкозоцентричний підхід терапії ЦД 2-го типу. Дані, отримані у ході епохальних контрольованих клінічних досліджень та реальної клінічної практики, дають можливість відкриття нових клінічних горизонтів щодо гепатопротекторних властивостей іНЗКТГ2. У цьому огляді проведено оцінку ефективності й безпеки та перспективи застосування іНЗКТГ2 в осіб із МАЖХП.

Ключові слова: інгібітор натрійзалежного котранспортера глюкози 2-го типу (іНЗКТГ2), дапа- гліфлозин, емпагліфлозин, стеатотична хвороба печінки, пов’язана з метаболічною дисфункцією, не- алкогольний стеатогепатит, цукровий діабет 2-го типу.

  

Prospects of using sodium-glucose co-transporter-2 (SGLT-2) inhibitors in patients

with metabolic-associated fatty liver disease (MAFLD)

Kostitska IO, Protas NM, Petrovska LR
Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine

Abstract

Metabolic dysfunction-associated fatty liver disease (MAFLD) is recognised worldwide as a serious health problem, given the global prevalence of about 30% of the world population and high incidence of nonalcoholic steatohepatitis (NASH), which has reached epidemic levels in the 12%-21% of people with type 2 diabetes mellitus (DM). In patients with comorbidity of type 2 DM, atherosclerotic cardiovascular disease (ASCVD), visceral obesity (VO), insulin resistance syndrome (IRS) the frequency of MAFLD is 70%. For this reason a modern, complex and patient-oriented approach to the treatment of MAFLD is of paramount importance, which can simultaneously treat several disorders by preventing interaction between underlying causes of NASH in patients with type 2 DM. The growing burden of morbidity, therapeutic inertia of primary care physicians and highly specialized gastroenterologists, endocrinologists regarding early diagnostics of NASH in people with type 2 DM and VO often leads to incomplete treatment of MAFLD manifestations. Nowadays SGLT-2 inhibitors present an innovative class of hypoglycemic drugs which have improved the glucose-centric approach to the therapy of type 2 DM combined with organ-protective properties. The data obtained from epoch-making controlled clinical trials and clinical practice presents an opportunity of new clinical horizons regarding the hepatoprotective properties of SGLT-2 inhibitors. In this review the efficacy, safety and prospects of using SGLT-2 in patients with MAFLD were evaluated.

Key words: sodium-glucose co-transporter-2 (SGLT-2) inhibitors, empagliflozin, dapagliflozin, metabolic dysfunction-associated fatty liver disease (MAFLD), nonalcoholic steatohepatitis (NASH), type 2 diabetes mellitus (DM)

References

  1. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016; 64: 73–84. Available from: https://doi.org/10.1002/hep.28431.
  2. Younossi ZM, Wong G, Anstee QM, Henry L. The Global Burden of Liver Disease. Clin Gastroenterol Hepatol. 2023 Jul; 21 (8): 1978-1991. Available from: https://doi.org/1016/j.cgh.2023.04.015.
  3. Stefan N, Cusi K. A global view of the interplay between nonalcoholic fatty liver disease and diabetes. Lancet Diabetes Endocrinol. 2022; 10 (4): 284–296. Available from: https://doi.org/1016/S2213-8587(22)00003-1. 
  4. Alonso-Peña M, Del Barrio M, Peleteiro-Vigil A, Jimenez-Gonzalez C, Santos-Laso A, Arias-Loste MT, et al. Innovative Therapeutic Approaches in Non-Alcoholic Fatty Liver Disease: When Knowing Your Patient Is Key. Int J Mol Sci. 2023 Jun 27; 24(13): Available from: https://doi.org/ 10.3390/ijms241310718.
  5. Fadieienko GD, Chereliuk NI, Galchinskaya VY. Metabolic diseases and non-alcoholic fatty liver disease – features of the composition of gut microbiota. Problems of Endocrine Pathology. 2020; 74 (4): 99-105. Available from: https://doi.org/10.21856/j-PEP.2020.4.13.
  6. Kurinna OG. Effects of stressogenic factors on the course of metabolic-associated fatty liver disease. Review. Modern Gastroenterology (Ukraine). 2023; 2 (130): 69-73. Available from: https://doi.org/10.30978/MG-2023-2-69.
  7. Lee S, Norheim F, Gulseth HL, Langleite TM, Kolnes KJ, Tangen DS, et al. Interaction between plasma fetuin-A and free fatty acids predicts changes in insulin sensitivity in response to long-term exercise. Physiol Rep. 2017 Mar; 5(5): Available from: https://doi.org/10.14814/phy2.13183.
  8. Kim H, Lee DS, An TH, Park HJ, Kim WK, Bae KH, et al. Metabolic Spectrum of Liver Failure in Type 2 Diabetes and Obesity: From NAFLD to NASH to HCC. Int J Mol Sci. 2021 Apr 26; 22(9): Available from: https://doi.org/10.3390/ijms22094495.
  9. Kushnir ІЕ, Chernova VM, Solomentseva ТА, Fadieienko GD. Regulation of metabolic homeostasis in patients with non-alcoholic fatty liver disease: the role of fetuin-A. Literature review. Ukrainian Therapeutical Journal. 2023; 1: 64-71. Available from: http://doi.org/10.30978/UTJ2023-1-64.
  10. American Diabetes Association releases updates to the 2023 standards of care in diabetes on the use of teplizumab in delaying the onset of type 1 diabetes. News release. American Diabetes Association. June 25, 2023. Accessed June 28 2023. Available from: https://diabetes.org/newsroom/press-releases/2023/american-diabetes-association-releases-updates-2023-standards-of-care-diabetes-use-teplizumab-delaying-onset-type-1-diabetes.
  11. Ismaiel A, Dumitraşcu DL. Cardiovascular Risk in Fatty Liver Disease: The Liver-Heart Axis-Literature Review. Front Med (Lausanne). 2019 Sep 13; 6: Available from: https://doi.org/10.3389/fmed.2019.00202.
  12. Bentsa TM. Non-alcoholic fatty liver disease and cardiovascular diseases: features of the comorbid course. Medicine of Ukraine. 2020; 1 (237): 44-47. Available from: https://doi.org/10.37987/1997-9894.2020.1(237).214176.
  13. Serhiyenko V, Serhiyenko A. Diabetes mellitus and congestive heart failure. International Journal of Endocrinology (Ukraine). 2022; 18(1): 57–69. Available from: https://doi.org/10.22141/2224-0721.18.1.2022.1146.
  14. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018; 67: 328–357. Available from: https://doi.org/10.1002/hep.29367.
  15. Canbay A, Kachru N, Haas JS, Sowa JP, Meise D, Ozbay AB. Patterns and predictors of mortality and disease progression among patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2020; 52: 1185–94. Available from: https://doi.org/ 10.1111/apt.16016.
  16. Teslenko OB, Fedorov SV, Bielinskyi MV, Serediuk NM. Nonalcoholic fatty liver disease and atrial fibrillation: the main markers of this association. Zaporozhye medical journal. 2023; 25(3), 198-203. Available from: https://doi.org/ 10.14739/2310-1210.2023.3.273664.
  17. Yefimenko TI, Mykytyuk MR. Non-alcoholic fatty liver disease: time for changes. International Journal of Endocrinology (Ukraine). 2021; 17(4): 334–345. Available from: https://doi.org/10.22141/2224-0721.17.4.2021.237350.
  18. Eslam M., Newsome P.N., Sarin S.K., Anstee Q.M., Targher G., Romero-Gomez M., et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020; 73 (1): 202-209. Available from: https://doi.org/1016/j.jhep.2020.03.039.
  19. Younossi ZM, Rinella ME, Sanyal AJ, Harrison SA, Brunt EM, Goodman Z, et al. From NAFLD to MAFLD: Implications of a Premature Change in Terminology. Hepatology. 2021 Mar; 73(3): 1194-1198. Available from: https://doi.org/1002/hep.31420.
  20. Lazarus JV, Mark HE, Anstee QM, Arab JP, Batterham RL, Castera L, et al. NAFLD Consensus Consortium. Advancing the global public health agenda for NAFLD: a consensus statement. Nat Rev Gastroenterol Hepatol. 2022 Jan; 19(1): 60-78. Available from: https://doi.org/1038/s41575-021-00523-4.
  21. Zhou XD, Targher G, Byrne CD, Somers V, Kim SU, Chahal CAA, et al. An international multidisciplinary consensus statement on MAFLD and the risk of CVD. Hepatol Int. 2023 Aug; 17(4): 773-791. Available from: https://doi.org/10.1007/s12072-023-10543-8.
  22. Cusi K, Isaacs S, Barb D, Basu R, Caprio S, Garvey WT, et al. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocr Pract. 2022 May; 28(5): 528-562. Available from: https://doi.org/10.1016/j.eprac.2022.03.010.
  23. Long MT, Noureddin M, Lim JK. AGA Clinical Practice Update: diagnosis and management of nonalcoholic fatty liver disease in lean individuals: expert review. Gastroenterology. 2022; 163 (3): 764–774. Available from: https://doi.org/ 1053/j.gastro.2022.06.023. 
  24. Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, et al. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology. 2023 May 1; 77(5): 1797-1835. Available from: https://doi.org/10.1097/HEP.0000000000000323.
  25. American diabetes association releases a guideline update in NAFLD (non-alcoholic fatty liver disease) and diabetes. News release. American Diabetes Association; June 25, 2023. Accessed June 27, 2023. Available from: https://diabetes.org/newsroom/press-releases/2023/american-diabetes-association-releases-guideline-update-NAFLD-diabetes.
  26. ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D,et al. 3. Prevention or delay of type 2 diabetes and associated comorbidities. Diabetes Care. 2023; 46 (Suppl.1): S49-S67. Available from: https://doi.org/10.2337/dc23-ad09.
  27. Pafili K, Roden M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol Metab. 2021; 50: Available from: https://doi.org/10.1016/j.molmet.2020.101122.
  28. Miao L, Xu J, Targher G, Byrne CD, Zheng MH. Old and new classes of glucose-lowering agents as treatments for non-alcoholic fatty liver disease: A narrative review. Clin Mol Hepatol. 2022; 28(4): 725-738. Available from: https://doi.org/3350/cmh.2022.0015.
  29. Loomba R, Lutchman G, Kleiner DE, Ricks M, Feld JJ, Borg BB,et al. Clinical trial: pilot study of metformin for the treatment of non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2009; 29(2): 172-182. Available from: https://doi.org/10.1111/j.1365-2036.2008.03869.x.
  30. Musso G, Cassader M, Rosina F, Gambino R. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomized trials. Diabetologia. 2012; 55(4): 885-904. Available from: https://doi.org/ 1007/s00125-011-2446-4.
  31. Cassader M, Rosina F, Gambino R. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomized trials. Diabetologia. 2012; 55(4): 885-904. Available from: https://doi.org/ 1007/s00125-011-2446-4. 
  32. Li Y, Liu L, Wang B, Wang J, Chen D. Metformin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Biomed Rep. 2013; 1(1): 57-64. Available from: https://doi.org/10.3892/br.2012.18.
  33. Sawangjit R, Chongmelaxme B, Phisalprapa P, Saokaew S, Thakkinstian A, Kowdley KV, et al. Comparative efficacy of interventions on nonalcoholic fatty liver disease (NAFLD): a prisma-compliant systematic review and network meta-analysis. Medicine (Baltimore). 2016; 95(32): Available from: https://doi.org/10.1097/MD.0000000000004529.
  34. Huang Y, Wang X, Yan C, Li C, Zhang L, Zhang L, et al. Effect of metformin on nonalcoholic fatty liver based on meta-analysis and network pharmacology. Medicine (Baltimore). 2022 Oct 28; 101(43): Available from: https://doi.org/10.1097/MD.0000000000031437.
  35. Belfort R, Harrison SA, Brown K, Darland C, Finch J, Hardies J,et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med. 2006; 355 (22): 2297-2307. Available from: https://doi.org/ 1056/NEJMoa060326.
  36. Aithal GP, Thomas JA, Kaye PV, Lawson A, Ryder SD, Spendlove I,et al. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology. 2008; 135(4): 1176-1184. Available from: https://doi.org/10.1053/j.gastro.2008.06.047. 
  37. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010; 362 (18): 1675-1685. Available from: https://doi.org/1056/NEJMoa0907929.
  38. Cusi K, Orsak B, Bril F, Lomonaco R, Hecht J, Ortiz-Lopez C, et al. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial. Ann Intern Med. 2016; 165(5): 305-315. Available from: https://doi.org/10.7326/M15-1774.
  39. Bril F, Biernacki DM, Kalavalapalli S, Lomonaco R, Subbarayan SK, Lai J,et al. Role of vitamin E for nonalcoholic steatohepatitis in patients with type 2 diabetes: a randomized controlled trial. Diabetes Care. 2019; 42(8): 1481-1488. Available from: https://doi.org/10.2337/dc19-0167. 
  40. Lingvay I, Raskin P, Szczepaniak LS. Effect of insulin-metformin combination on hepatic steatosis in patients with type 2 diabetes. J Diabetes Complications. 2007; 21(3): 137-142. Available from: https://doi.org/ 1016/j.jdiacomp.2007.02.005. 
  41. Juurinen L, Tiikkainen M, Häkkinen AM, Hakkarainen A, Yki-Järvinen H. Effects of insulin therapy on liver fat content and hepatic insulin sensitivity in patients with type 2 diabetes. Am J Physiol Endocrinol Metab. 2007; 292 (3): E829-E835. Available from: https://doi.org/10.1152/ajpendo.00133.2006.
  42. Cusi K, Sanyal AJ, Zhang S, Hoogwerf BJ, Chang AM, Jacober SJ,et al. Different effects of basal insulin peglispro and insulin glargine on liver enzymes and liver fat content in patients with type 1 and type 2 diabetes. Diabetes Obes Metab. 2016; 18 (suppl 2): 50-58. Available from: https://doi.org/10.1111/dom.12751.
  43. Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (lean): a multicentre, doubleblind, randomised, placebo-controlled phase 2 study. Lancet. 2016; 387 (10019): 679-690. Available from: https://doi.org/10.1016/S0140-6736(15)00803-X. 
  44. Cusi K. Incretin-based therapies for the management of nonalcoholic fatty liver disease in patients with type 2 diabetes. Hepatology. 2019; 69(6): 2318-2322. Available from: https://doi.org/10.1002/hep.30670. 
  45. Newsome PN, Buchholtz K, Cusi K, Linder M, Okanoue T, Ratziu V,et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med. 2021; 384 (12): 1113-1124. Available from: https://doi.org/10.1056/NEJMoa2028395.
  46. Patel Chavez C, Cusi K, Kadiyala S. The emerging role of glucagon-like peptide-1 receptor agonists for the management of NAFLD. J Clin Endocrinol Metab. 2022;107(1): 29-38. Available from: https://doi.org/ 1210/clinem/dgab578.
  47. Latva-Rasku A, Honka MJ, Kullberg J, Mononen N, Lehtimäki T, Saltevo J, et al. The SGLT2 inhibitor dapagliflozin reduces liver fat but does not affect tissue insulin sensitivity: a randomized, double-blind, placebo-controlled study with 8-week treatment in type 2 diabetes patients. Diabetes Care. 2019; 42(5): 931-937. Available from: https://doi.org/10.2337/dc18-1569.
  48. Kanwal F, Kramer JR, Li L, Dai J, Natarajan Y, Yu X,et al. Effect of metabolic traits on the risk of cirrhosis and hepatocellular cancer in nonalcoholic fatty liver disease. Hepatology. 2020; 71(3): 808-819. Available from: https://doi.org/10.1002/hep.31014. 
  49. Cusi K. Time to include nonalcoholic steatohepatitis in the management of patients with type 2 diabetes. Diabetes Care. 2020; 43(2): 275-279. Available from: https://doi.org/10.2337/dci19-0064. 
  50. Kahl S, Gancheva S, Straßburger K, Herder C, Machann J, Katsuyama H,et al. Empagliflozin effectively lowers liver fat content in well-controlled type 2 diabetes: a randomized, double-blind, phase 4, placebo-controlled trial. Diabetes Care. 2020; 43(2): 298-305. Available from: https://doi.org/10.2337/dc19-0641.
  51. Smits MM, Tonneijck L, Muskiet MH, Kramer MH, Pouwels PJ, Pieters-van den Bos IC,et al. Twelve week liraglutide or sitagliptin does not affect hepatic fat in type 2 diabetes: a randomised placebo controlled trial. Diabetologia. 2016; 59(12): 2588-2593. Available from: https://doi.org/10.1007/s00125-016-4100-7. 
  52. Cui J, Philo L, Nguyen P, Hofflich H, Hernandez C, Bettencourt R, et al. Sitagliptin vs. placebo for non-alcoholic fatty liver disease: a randomized controlled trial. J Hepatol. 2016; 65(2): 369-376. Available from: https://doi.org/ 1016/j.jhep.2016.04.021.
  53. Joy TR, McKenzie CA, Tirona RG, Summers K, Seney S, Chakrabarti S,et al. Sitagliptin in patients with nonalcoholic steatohepatitis: a randomized, placebo-controlled trial. World J Gastroenterol. 2017; 23(1): 141-150. Available from: https://doi.org/3748/wjg.v23.i1.141.
  54. Gkiourtzis N, Michou P, Moutafi M, Glava A, Cheirakis K, Christakopoulos A, et al. The benefit of metformin in the treatment of pediatric non-alcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trials. Eur J Pediatr. 2023 Aug 28. Available from: https://doi.org/1007/s00431-023-05169-9.
  55. Zhang ZY, Yan Q, Wu WH, Zhao Y, Zhang H, Li J. PPAR-alpha/gamma agonists, glucagon-like peptide-1 receptor agonists and metformin for non-alcoholic fatty liver disease: A network meta-analysis. J Int Med Res. 2023 Jun; 51 (6): 3000605231177191. Available from: https://doi.org/10.1177/03000605231177191.
  56. Feng WH, Bi Y, Li P, Yin TT, Gao CX, Shen SM, et al. Effects of liraglutide, metformin and gliclazide on body composition in patients with both type 2 diabetes and non-alcoholic fatty liver disease: A randomized trial. J Diabetes Investig. 2019 Mar; 10(2): 399-407. Available from: https://doi.org/10.1111/jdi.12888.
  57. Susilawati E, Levita J, Susilawati Y, Sumiwi SA. Review of the Case Reports on Metformin, Sulfonylurea, and Thiazolidinedione Therapies in Type 2 Diabetes Mellitus Patients. Med Sci (Basel). 2023 Aug 15; 11(3): Available from: https://doi.org/10.3390/medsci11030050.
  58. Gu Y, Sun L, Zhang W, Kong T, Zhou R, He Y, et al. Comparative efficacy of 5 sodium-glucose cotransporter protein-2 (SGLT-2) inhibitor and 4 glucagon-like peptide-1 (GLP-1) receptor agonist drugs in non-alcoholic fatty liver disease: A GRADE-assessed systematic review and network meta-analysis of randomized controlled trials. Front Pharmacol. 2023 Mar 13; 14: Available from: https://doi.org/10.3389/fphar.2023.1102792.
  59. Zheng S, Huang H, Chen H, Liu Y. Glp-1 Receptor Agonists Regulate the Progression of Diabetes Mellitus Complicated with Fatty Liver by Down-regulating the Expression of Genes Related to Lipid Metabolism. Appl Biochem Biotechnol. 2023 Aug; 195(8): 5238-5251. Available from: https://doi.org/10.1007/s12010-023-04505-x.
  60. Prybyla O. Pharmacokinetic characteristics and morphometric effects of sodium-glucose contransporter-2 inhibitors in men and women with type 2 diabetes mellitus (literature review and own results). International Journal of Endocrinology (Ukraine). 2021; 17(4): 293–303. Available from: https://doi.org/22141/2224-0721.17.4.2021.237342.
  61. Levchuk NI, Kovzun OI, Pushkarev VM, Tronko MD. Effect of sodium-dependent glucose cotransporter type 2 inhibitors on lipid metabolism in patients with diabetes mellitus (literature review). Journal of the National Academy of Medical Sciences of Ukraine. (Ukraine) 2023; 29 (1-2): 5-21. Available from: https://doi.org/10.37621/JNAMSU-2023-1-2-1.
  62. Kedyk AV, Kutsyn OO. Metabolic effects of sodium-glucose co-transporter 2 inhibitor. Clinical Endocrinology and Endocrine Surgery (Ukraine). 2022; 4 (80): 40-56. Available from: https://doi.org/ 10.30978/CEES-2022-4-42.
  63. Xu B, Li S, Kang B, Zhou J. The current role of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus management. Cardiovasc Diabetol. 2022; 21(1): Available from: https://doi.org/10.1186/s12933-022-01512-w.
  64. Kashiwagi A, Maegawa H. Metabolic and hemodynamic effects of sodium-dependent glucose cotransporter 2 inhibitors on cardio-renal protection in the treatment of patients with type 2 diabetes mellitus. J Diabetes Investig. 2017; 8 (4): 416-427. Available from: https://doi.org/1111/jdi.12644.
  65. Akiyama H, Nishimura A, Morita N, Yajima T. Evolution of sodium-glucose co-transporter 2 inhibitors from a glucose-lowering drug to a pivotal therapeutic agent for cardio-renal-metabolic syndrome. Front Endocrinol (Lausanne). 2023 Jan 30; 14: Available from: https://doi.org/10.3389/fendo.2023.1111984.
  66. Ren J, Wang X, Yee C, Gorrell MD, McLennan SV, Twigg SM. Sitagliptin Is More Effective Than Gliclazide in Preventing  Pro-Fibrotic and Pro-Inflammatory Changes in a Rodent Model of Diet-Induced Non-Alcoholic Fatty Liver Disease. Molecules. 2022; 27(3): Available from: https://doi.org/10.3390/molecules27030727.
  67. Yan J, Yao B, Kuang H, Yang X, Huang Q, Hong T,et al. Liraglutide, Sitagliptin, and Insulin Glargine Added to Metformin: The Effect on Body Weight and Intrahepatic Lipid in Patients With Type 2 Diabetes Mellitus and Nonalcoholic Fatty Liver Disease. Hepatology. 2019; 69 (6): 2414-2426. Available from: https://doi.org/1002/hep.30320.
  68. Chrysavgis L, Papatheodoridi AM, Chatzigeorgiou A, Cholongitas E. The impact of sodium glucose co-transporter 2 inhibitors on non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2021 Apr; 36(4): 893-909. Available from: https://doi.org/10.1111/jgh.15202.
  69. Budd J, Cusi K. Role of Agents for the Treatment of Diabetes in the Management of Nonalcoholic Fatty Liver Disease. Curr Diab Rep. 2020 Oct 5; 20 (11): 59. Available from: https://doi.org/10.1007/s11892-020-01349-1.
  70. Athyros VG, Polyzos SA, Kountouras J, Katsiki N, Anagnostis P, Doumas M, et al. Non-Alcoholic Fatty Liver Disease Treatment in Patients with Type 2 Diabetes Mellitus; New Kids on the Block. Curr Vasc Pharmacol. 2020; 18(2): 172-181. Available from: https://doi.org/10.2174/1570161117666190405164313.
  71. Androutsakos T, Nasiri-Ansari N, Bakasis AD, Kyrou I, Efstathopoulos E, Randeva HS, et al. SGLT-2 Inhibitors in NAFLD: Expanding Their Role beyond Diabetes and Cardioprotection. Int J Mol Sci. 2022; 23(6): Available from: https://doi.org/10.3390/ijms23063107.
  72. Caturano A, Galiero R, Loffredo G, Vetrano E, Medicamento G, Acierno C, et al. Effects of a Combination of Empagliflozin Plus Metformin vs. Metformin Monotherapy on NAFLD Progression in Type 2 Diabetes: The IMAGIN Pilot Study. Biomedicines. 2023 Jan 23; 11 (2): Available from: https://doi.org/10.3390/biomedicines11020322.
  73. Zuiev K. Review of the evidence base of representatives of the group of sodium-glucose co-transporter 2 inhibitors available at the Ukrainian market (literature review). International Journal of Endocrinology (Ukraine). 2020; 16(3): 237–244. Available from: https://doi.org/22141/2224-0721.16.3.2020.205273.
  74. Pan R, Zhang Y, Wang R, Xu Y, Ji H, Zhao Y. Effect of SGLT-2 inhibitors on body composition in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. PLoS One. 2022 Dec 30; 17(12): e0279889. Available from: https://doi.org/1371/journal.pone.0279889.
  75. Wang X, Wu N, Sun C, Jin D, Lu H. Effects of SGLT-2 inhibitors on adipose tissue distribution in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Diabetol Metab Syndr. 2023 May 31; 15(1): 113. Available from: https://doi.org/10.1186/s13098-023-01085-y.
  76. Ciccarelli G, Di Giuseppe G, Cinti F, Moffa S, Mezza T, Giaccari A. Why do some glucose-lowering agents improve non-alcoholic fatty liver disease where as others do not? A narrative review in search of a unifying hypothesis. Diabetes Metab Res Rev. 2023 Jun 12: e3668. Available from: https://doi.org/10.1002/dmrr.3668.
  77. Kuchay MS, Farooqui KJ, Mishra SK, Mithal A. Glucose Lowering Efficacy and Pleiotropic Effects of Sodium-Glucose Cotransporter 2 Inhibitors. Adv Exp Med Biol. 2021; 1307: 213-230. Available from: https://doi.org/10.1007/5584_2020_479.
  78. Yan H, Huang C, Shen X, Li J, Zhou S, Li W. GLP-1 RAs and SGLT-2 Inhibitors for Insulin Resistance in Nonalcoholic Fatty Liver Disease: Systematic Review and Network Meta-Analysis. Front. Endocrinol. 2022; 13: 923606. Available from: https://doi.org/3389/fendo.2022.923606.
  79. Yabiku K, Nakamoto K, Tsubakimoto M. Effects of Sodium-Glucose Cotransporter 2 Inhibition on Glucose Metabolism, Liver Function, Ascites, and Hemodynamics in a Mouse Model of Nonalcoholic Steatohepatitis and Type 2 Diabetes. J Diabetes Res. 2020 Dec 27; 2020: Available from: https://doi.org/10.1155/2020/1682904.
  80. ElMahdy MK, Helal MG, Ebrahim TM. Potential anti-inflammatory effect of dapagliflozin in HCHF diet-induced fatty liver degeneration through inhibition of TNF-α, IL-1β, and IL-18 in rat liver. International Immunopharmacology. 2020 Sep 1; 86: Available from: https://doi.org/10.1016/j.intimp.2020.106730.
  81. Han T, Fan Y, Gao J, Fatima M, Zhang Y, Ding Y, et al. Sodium glucose cotransporter 2 inhibitor dapagliflozin depressed adiposity and ameliorated hepatic steatosis in high-fat diet induced obese mice. Adipocyte. 2021 Jan 1; 10 (1): 446-55. Available from: https://doi.org/10.1080/21623945.2021.1979277.
  82. Lin D, Song Y. Dapagliflozin Presented Nonalcoholic Fatty Liver Through Metabolite Extraction and AMPK/NLRP3 Signaling Pathway. Horm Metab Res. 2023 Jan; 55 (1): 75-84. Available from: https://doi.org/10.1055/a-1970-3388.
  83. Hayashi T, Fukui T, Nakanishi N, Yamamoto S, Tomoyasu M, Osamura A, et al. Dapagliflozin decreases small dense low-density lipoprotein-cholesterol and increases high-density lipoprotein 2-cholesterol in patients with type 2 diabetes: comparison with sitagliptin. Cardiovascular Diabetology 2017; 16 (1): 1-3. Available from: https://doi.org/10.1186/s12933-016-0491-5.
  84. Kurinami N, Sugiyama S, Yoshida A, Hieshima K, Miyamoto F, Kajiwara K, et al. Dapagliflozin significantly reduced liver fat accumulation associated with a decrease in abdominal subcutaneous fat in patients with inadequately controlled type 2 diabetes mellitus. Diabetes Res Clin Pract. 2018 Aug; 142: 254-263. Available from: https://doi.org/10.1016/j.diabres.2018.05.017.
  85. Choi DH, Jung CH, Mok JO, Kim CH, Kang SK, Kim BY. Effect of dapagliflozin on alanine aminotransferase improvement in type 2 diabetes mellitus with non-alcoholic fatty liver disease. Endocrinology and Metabolism. 2018 Sep 1; 33(3): 387-394. Available from: https://doi.org/10.3803/EnM.2018.33.3.387.
  86. Shimizu M, Suzuki K, Kato K, Jojima T, Iijima T, Murohisa T, et al. Evaluation of the effects of dapagliflozin, a sodium‐glucose co‐transporter‐2 inhibitor, on hepatic steatosis and fibrosis using transient elastography in patients with type 2 diabetes and non‐alcoholic fatty liver disease. Diabetes, Obesity and Metabolism. 2019 Feb; 21 (2): 285-292. Available from: https://doi.org/ 1111/dom.13520. 
  87. Kinoshita T, Shimoda M, Nakashima K, Fushimi Y, Hirata Y, Tanabe A, et al. Comparison of the effects of three kinds of glucose‐lowering drugs on non‐alcoholic fatty liver disease in patients with type 2 diabetes: a randomized, open‐label, three‐arm, active control study. Journal of diabetes investigation. 2020 Nov; 11 (6): 1612-1622. Available from: https://doi.org/10.1111/jdi.13279.
  88. Yano K, Seko Y, Takahashi A, Okishio S, Kataoka S, Takemura M, et al. Effect of sodium glucose cotransporter 2 inhibitors on renal function in patients with nonalcoholic fatty liver disease and type 2 diabetes in Japan. Diagnostics. 2020 Feb 6; 10 (2): Available from: https://doi.org/10.3390/diagnostics10020086. 
  89. Euh W, Lim S, Kim JW. Sodium-glucose cotransporter-2 inhibitors ameliorate liver enzyme abnormalities in korean patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease. Frontiers in Endocrinology. 2021 Jun 10; 12: Available from: https://doi.org/10.3389/fendo.2021.613389. 
  90. Eriksson JW, Lundkvist P, Jansson PA, Johansson L, Kvarnström M, Moris L, et al. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes: a double-blind randomised placebo-controlled study. Diabetologia. 2018 Sep; 61: 1923-1934. Available from: https://doi.org/10.1007/s00125-018-4675-2.
  91. Guja C, Repetto E, Han J, Hardy E, Jabbour SA. Effect of the exenatide plus dapagliflozin combination on fatty liver index and insulin resistance in type 2 diabetes patients: The DURATION-8 trial. Diabetologia. 2018; 61 (Supplement 1):
  92. Gastaldelli A, Repetto E, Guja C, Hardy E, Han J, Jabbour SA, et al. Exenatide and dapagliflozin combination improves markers of liver steatosis and fibrosis in patients with type 2 diabetes. Diabetes Obes. Metab. 2020; 22: 393–403. Available from: https://doi.org/1111/dom.13907.
  93. Johansson L, Hockings PD, Johnsson E, Dronamraju N, Maaske J, Garcia-Sanchez R, et al. Dapagliflozin plus saxagliptin add-on to metformin reduces liver fat and adipose tissue volume in patients with type 2 diabetes. Diabetes Obes Metab. 2020 Jul; 22 (7): 1094-1101. Available from: https://doi.org/10.1111/dom.14004.
  94. Harreiter J, Just I, Leutner M, Bastian M, Brath H, Schelkshorn C, et al. Combined exenatide and dapagliflozin has no additive effects on reduction of hepatocellular lipids despite better glycaemic control in patients with type 2 diabetes mellitus treated with metformin: EXENDA, a 24-week, prospective, randomized, placebo-controlled pilot trial. Diabetes Obes. Metab. 2021; 23: 1129–1139. Available from: https://doi.org/1111/dom.14319.
  95. Phrueksotsai S, Pinyopornpanish K, Euathrongchit J, Leerapun A, Phrommintikul A, Buranapin S, et al. The effects of dapagliflozin on hepatic and visceral fat in type 2 diabetes patients with non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2021; 36: 2952–2959. Available from: https://doi.org/1111/jgh.15580.
  96. Frías JP, Maaske J, Suchower L, Johansson L, Hockings PD, Iqbal N, et al. Long-term effects of dapagliflozin plus saxagliptin versus glimepiride on a background of metformin in patients with type 2 diabetes: Results of a 104-week extension to a 52-week randomized, phase 3 study and liver fat MRI substudy. Diabetes Obes. Metab. 2021; 24: 61–71. Available from: https://doi.org/ 1111/dom.14548. 
  97. Aso Y, Kato K, Sakurai S, Kishi H, Shimizu M, Jojima T, et al. Impact of dapagliflozin, an SGLT2 inhibitor, on serum levels of soluble dipeptidyl peptidase‐4 in patients with type 2 diabetes and non‐alcoholic fatty liver disease. International journal of clinical practice. 2019 May; 73 (5): Available from: https://doi.org/10.1111/ijcp.13335.
  98. Brown E, Wilton MM, Sprung VS, Harrold JA, Halford JCG, Stancak A,et al. A randomised, controlled, double blind study to assess mechanistic effects of combination therapy of dapagliflozin with exenatide QW versus dapagliflozin alone in obese patients with type 2 diabetes mellitus (RESILIENT): study protocol. BMJ Open. 2021; 11 (7): Available from: https://doi.org/10.1136/bmjopen-2020-045663.
  99. Tobita H, Yazaki T, Kataoka M, Kotani S, Oka A, Mishiro T, et al. Comparison of dapagliflozin and teneligliptin in nonalcoholic fatty liver disease patients without type 2 diabetes mellitus: a prospective randomized study. J Clin Biochem Nutr. 2021 Mar; 68 (2): 173-180. Available from: https://doi.org/10.3164/jcbn.20-129.
  100. Imamura T, Kinugawa K. Combination Therapy Using Pemafibrate and Dapagliflozin for Metabolic Dysfunction-associated Fatty Liver Disease. Intern Med. 2023 May 1; 62 (9): 1371-1373. Available from: https://doi.org/10.2169/internalmedicine.0277-22.
  101. Hu C, Qu T, LI L, Huang Y, Liu H, Rao C. Therapeutic outcome of dapagliflozin in patients with type 2 diabetes and non-alcoholic fatty liver disease: a meta-analysis of randomized controlled trials. Afri Health Sci. 2023; 23 (2): 416-21. Available from: https://doi.org/4314/ahs.v23i2.48.
  102. Yabiku K. Efficacy of Sodium-Glucose Cotransporter 2 Inhibitors in Patients With Concurrent Type 2 Diabetes Mellitus and Non-Alcoholic Steatohepatitis: A Review of the Evidence. Front Endocrinol (Lausanne). 2021 Dec 7; 12: Available from: https://doi.org/ 10.3389/fendo.2021.768850.
  103. Chen JYS, Chua D, Lim CO, Ho WX, Tan NS. Lessons on Drug Development: A Literature Review of Challenges Faced in Nonalcoholic Fatty Liver Disease (NAFLD) Clinical Trials. Int J Mol Sci. 2022; 24 (1): Available from: https://doi.org/10.3390/ijms24010158.
  104. Kahl S, Ofstad AP, Zinman B, Wanner C, Schüler E, Sattar N, et al. Effects of empagliflozin on markers of liver steatosis and fibrosis and their relationship to cardiorenal outcomes. Diabetes Obes Metab. 2022 Jun; 24 (6): 1061-71. Available from: https://doi.org/1111/dom.14670.
  105. Sattar N, Fitchett D, Hantel S, George JT, Zinman B. Empagliflozin is associated with improvements in liver enzymes potentially consistent with reductions in liver fat: results from randomised trials including the EMPA-REG OUTCOME Diabetologia. 2018; 61 (10): 2155-63. Available from: https://doi.org/10.1007/s00125-018-4702-3.
  106. Kuchay MS, Krishan S, Mishra SK, Farooqui KJ, Singh MK, Wasir JS, et al. Effect of Empagliflozin on Liver Fat in Patients With Type 2 Diabetes and Nonalcoholic Fatty Liver Disease: A Randomized Controlled Trial (E-LIFT Trial). Diabetes Care1 August 2018; 41 (8): 1801–1808. Available from: https://doi.org/2337/dc18-0165.
  107. Taheri H, Malek M, Ismail-Beigi F, Zamani F, Sohrabi M, Reza Babaei M, et al.Effect of empagliflozin on liver steatosis and fibrosis in patients with non-alcoholic fatty liver disease without diabetes: a randomized, double-blind, placebo-controlled. Adv Ther. 2020; 37 (11): 4697-708. Available from: https://doi.org/1007/s12325-020-01498-5.
  108. Chehrehgosha H, Sohrabi MR, Ismail-Beigi F, Malek M, Babaei MR, Zamani F, et al. Empagliflozin Improves Liver Steatosis and Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease and Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Diabetes Ther. 2021. 12 (3): 843–861. Available from: https://doi.org/1007/s13300-021-01011-3.
  109. Lai LL, Vethakkan SR, Nik Mustapha NR, Mahadeva S, Chan WK. Empagliflozin for the treatment of nonalcoholic steatohepatitis in patients with type 2 diabetes mellitus. Dig Dis Sci. 2020 Feb; 65 (2): 623-31. Available from: https://doi.org/1007/ s10620-019-5477-1.
  110. Elhini SH, Wahsh EA, Elberry AA, El Ameen NF, Abdelfadil Saedii A, Refaie SM, et al. The Impact of an SGLT2 Inhibitor versus Ursodeoxycholic Acid on Liver Steatosis in Diabetic Patients. Pharmaceuticals. 2022; 15 (12): Available from: https://doi.org/10.3390/ph15121516.
  111. Gaborit B, Ancel P, Abdullah AE, Maurice F, Abdesselam I, Calen A, et al. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study. Cardiovascular diabetology. 2021 Dec; 20: 1-4. Available from: https://doi.org/10.1186/s12933-021-01237-2.
  112. Perakakis N, Chrysafi P, Feigh M, Veidal SS, Mantzoros CS. Empagliflozin Improves Metabolic and Hepatic Outcomes in a Non-Diabetic Obese Biopsy-Proven Mouse Model of Advanced NASH. Int J Mol Sci. 2021; 22 (12): Available from: https://doi.org/10.3390/ijms22126332.
  113. Park HJ, Han H, Oh EY, Kim SR, Park KH, Lee JH,et al. Empagliflozin and Dulaglutide are Effective against Obesity-induced Airway Hyperresponsiveness and Fibrosis in A Murine Model. Sci Rep. 2019; 9 (1): Available from: https://doi.org/10.1038/s41598-019-51648-1.
  114. Kullmann S, Hummel J, Wagner R, Dannecker C, Vosseler A, Fritsche L,et al. Empagliflozin improves insulin sensitivity of the hypothalamus in humans with prediabetes: a randomized, double-blind, placebo-controlled, phase 2 trial. Diabetes Care. 2022, 45: 398-406. Available from: https://doi.org/2337/dc21-1136.
  115. Szekeres Z, Toth K, Szabados E. The effects of SGLT2 inhibitors on lipid metabolism. Metabolites. 2021, 11: Available from: https://doi.org/ 10.3390/metabo11020087.
  116. Hossain MF, Khan NA, Rahman A, Chowdhury MFI, Bari S, Khan MA, et al. Empagliflozin Ameliorates Progression From Prediabetes to Diabetes and Improves Hepatic Lipid Metabolism: A Systematic Review. Cureus. 2022; 14 (8): Available from: https://doi.org/10.7759/cureus.28367.
  117. Nakaguchi H, Kondo Y, Kyohara M, Konishi H, Oiwa K, Terauchi Y. Effects of liraglutide and empagliflozin added to insulin therapy in patients with type 2 diabetes: A randomized controlled study. J Diabetes Investig. 2020. 11 (6): 1542–1550. Available from: https://doi.org/1111/jdi.13270.
  118. Zeng Y, Liu S, Lee C, Sun F, Liu JJ. Effect of empagliflozin versus linagliptin on body composition in Asian patients with type 2 diabetes treated with premixed insulin. Sci Rep. 2022. 12 (1): Available from: https://doi.org/10.1038/s41598-022-21486-9.
  119. Borisov AN, Kutz A, Christ ER, Heim MH, Ebrahimi F. Canagliflozin and Metabolic Associated Fatty Liver Disease in Patients with Diabetes Mellitus: New Insights from CANVAS. J Clin Endocrinol Metab. 2023 May 7: Available from: https://doi.org/10.1210/clinem/dgad249.
  120. Kabil SL, Mahmoud NM. Canagliflozin protects against non-alcoholic steatohepatitis in type 2 diabetic rats through zinc alpha-2 glycoprotein up-regulation. European journal of pharmacology. 2018 Jun 5; 828: 135-145. Available from: https://doi.org/10.1016/j.ejphar.2018.03.043. 
  121. Shiba K, Tsuchiya K, Komiya C, Miyachi Y, Mori K, Shimazu N, et al. Canagliflozin, an SGLT2 inhibitor, attenuates the development of hepatocellular carcinoma in a mouse model of human NASH. Scientific reports. 2018 Feb 5; 8 (1): Available from: https://doi.org/10.1038/s41598-018-19658-7. 
  122. Jojima T, Wakamatsu S, Kase M, Iijima T, Maejima Y, Shimomura K, et al. The SGLT2 Inhibitor Canagliflozin Prevents Carcinogenesis in a Mouse Model of Diabetes and Non-Alcoholic Steatohepatitis-Related Hepatocarcinogenesis: Association with SGLT2 Expression in Hepatocellular Carcinoma.  J. Mol. Sci.2019; 20: 5237.Available from: https://doi.org/10.3390/ijms20205237. 
  123. Tanaka K, Takahashi H, Katagiri S, Sasaki K, Ohsugi Y, Watanabe K, et al. Combined effect of canagliflozin and exercise training on high-fat diet-fed mice. American Journal of Physiology-Endocrinology and Metabolism. 2020 Apr 1; 318 (4): E492-E503. Available from: https://doi.org/10.1152/ajpendo.00401.2019. 
  124. Ozutsumi T, Namisaki T, Shimozato N, Kaji K, Tsuji Y, et al. Combined treatment with sodium-glucose cotransporter-2 inhibitor (Canagliflozin) and dipeptidyl peptidase-4 inhibitor (teneligliptin) alleviates NASH progression in A non-diabetic rat model of steatohepatitis. International journal of molecular sciences. 2020 Mar 21; 21 (6): Available from: https://doi.org/10.3390/ijms21062164. 
  125. Yoshino K, Hosooka T, Shinohara M, Aoki C, Hosokawa Y, Imamori M, Ogawa W. Canagliflozin ameliorates hepatic fat deposition in obese diabetic mice: Role of prostaglandin E2. Biochemical and Biophysical Research Communications. 2021 Jun 11; 557: 62-68. Available from: https://doi.org/1016/j.bbrc.2021.04.012.
  126. Xu Z, Hu W, Wang B, Xu T, Wang J, Wei D. Canagliflozin ameliorates nonalcoholic fatty liver disease by regulating lipid metabolism and inhibiting inflammation through induction of autophagy. Yonsei Medical Journal. 2022 Jul; 63 (7): 619-631. Available from: https://doi.org/10.3349/ymj.2022.63.7.619. 
  127. Akuta N, Watanabe C, Kawamura Y, Arase Y, Saitoh S, Fujiyama S, et al. Effects of a sodium‐glucose cotransporter 2 inhibitor in nonalcoholic fatty liver disease complicated by diabetes mellitus: preliminary prospective study based on serial liver biopsies. Hepatology communications. 2017 Feb; 1 (1): 46-52. Available from: https://doi.org/10.1002/hep4.1019.
  128. Seko Y, Sumida Y, Tanaka S, Mori K, Taketani H, Ishiba H, et al. Effect of sodium glucose cotransporter 2 inhibitor on liver function tests in Japanese patients with non‐alcoholic fatty liver disease and type 2 diabetes mellitus. Hepatology Research. 2017 Sep; 47 (10): 1072-1078. Available from: https://doi.org/ 1111/hepr.12834.
  129. Gautam A, Agrawal PK, Doneria J, Nigam A. Effects of Canagliflozin on Abnormal Liver Function Tests in Patients of Type 2 Diabetes with Non-Alcoholic Fatty Liver Disease. J Assoc Physicians India. 2018 Aug; 66 (8): 62-66.
  130. Bajaj HS, Brown RE, Bhullar L, Sohi N, Kalra S, Aronson R. SGLT2 inhibitors and incretin agents: Associations with alanine aminotransferase activity in type 2 diabetes. Diabetes Metab. 2018 Dec; 44 (6): 493-499. Available from: https://doi.org/ 10.1016/j.diabet.2018.08.001.
  131. Itani T, Ishihara T. Efficacy of canagliflozin against nonalcoholic fatty liver disease: a prospective cohort study. Obesity Science & Practice. 2018 Oct; 4 (5): 477-482. Available from: https://doi.org/10.1002/osp4.294.
  132. Seko Y, Sumida Y, Sasaki K, Itoh Y, Iijima H, Hashimoto T, et al. Sodium glucose cotransporter 2 inhibitor, canagliflozin ameliorate liver function in Japanese patients with type 2 diabetes mellitus: subgroup analyses of clinical trials. Journal of hepatology. 2019; 70 (1): e797‐ Available from: https://doi.org/10.1016/S0168-8278(09)00831-9.
  133. Cusi K, Bril F, Barb D, Polidori D, Sha S, Ghosh A, et al. Effect of canagliflozin treatment on hepatic triglyceride content and glucose metabolism in patients with type 2 diabetes. Diabetes Obes Metab. 2019 Apr; 21 (4): 812-821. Available from: https://doi.org/1111/dom.13584.
  134. Akuta N, Kawamura Y, Watanabe C, Nishimura A, Okubo M, Mori Y, et al. Impact of sodium glucose cotransporter 2 inhibitor on histological features and glucose metabolism of non‐alcoholic fatty liver disease complicated by diabetes mellitus. Hepatology Research. 2019 May; 49 (5): 531-539. Available from: https://doi.org/10.1111/hepr.13304. 
  135. McCrimmon RJ, Catarig A, Frias JP, Lausvig NL, Roux CWI, Thielke D, et al. Effects of once-weekly semaglutide vs once-daily canagliflozin on body composition in type 2 diabetes: a substudy of the SUSTAIN 8 randomised controlled clinical trial. Diabetologia. 2020. 63 (3): 473–485. Available from: https://doi.org/1007/s00125-019-05065-8.
  136. Ferrannini G, Rosenthal N, Hansen MK, Ferrannini E. Liver function markers predict cardiovascular and renal outcomes in the CANVAS Program. Cardiovasc Diabetol. 2022; 21 (1): Available from: https://doi.org/10.1186/s12933-022-01558-w.
  137. Corbin KD, Dagogo‐Jack S, Cannon CP, Charbonnel B, Cherney DZI, Cosentino F, et al. Long-term effects of ertugliflozin (ERTU) on liver enzymes and indices in patients with type 2 diabetes: analyses from VERTIS CV. Diabetologia. 2021; 64: S218‐ Available from: https://doi.org/10.1007/s00125-021-05519-y.
  138. Täger T, Atar D, Agewall S, Katus HA, Grundtvig M, Cleland JGF, et al. Comparative efficacy of sodium- glucose cotransporter-2 inhibitors (SGLT2i) for cardiovascular outcomes in type 2 diabetes: a systematic review and network meta-analysis of randomised controlled trials. Heart Fail Rev. 2021; 26: 1421–1435. Available from: https://doi.org/1007/ s10741-020-09954-8.
  139. Han KA, Kim YH, Kim DM, Lee BW, Chon S, Sohn TS, et al. Efficacy and Safety of Enavogliflozin versus Dapagliflozin as Add-on to Metformin in Patients with Type 2 Diabetes Mellitus: A 24-Week, Double-Blind, Randomized Trial. Diabetes Metab J. 2023 Feb 9. Available from: https://doi.org/4093/dmj.2022.0315.
  140. Kwak SH, Han KA, Kim KS, Yu JM, Kim E, Won JC, et al. Efficacy and safety of enavogliflozin, a novel SGLT2 inhibitor, in Korean people with type 2 diabetes: A 24-week, multicentre, randomized, double-blind, placebo-controlled, phase III trial. Diabetes Obes Metab. 2023 Jul; 25 (7): 1865-1873. Available from: https://doi.org/10.1111/dom.15046.
  141. Dutta D, Harish BG, Anne B, Nagendra L. Role of novel sodium glucose co-transporter-2 inhibitor enavogliflozin in type-2 diabetes: A systematic review and meta-analysis. Diabetes Metab Syndr. 2023 Jul 3; 17 (8): Available from: https://doi.org/10.1016/j.dsx.2023.102816.
  142. Kim KS, Han KA, Kim TN, Park CY, Park JH, Kim SY, et al. Efficacy and safety of enavogliflozin versus dapagliflozin added to metformin plus gemigliptin treatment in patients with type 2 diabetes: A double-blind, randomized, comparator-active study: ENHANCE-D study. Diabetes Metab. 2023 Jul; 49 (4): Available from: https://doi.org/10.1016/j.diabet.2023.101440.
  143. Poole RM, Prossler JE. Tofogliflozin: first global approval. Drugs. 2014 Jun; 74 (8): 939-944. Available from: https://doi.org/10.1007/s40265-014-0229-1.
  144. Yoneda M, Honda Y, Ogawa Y, Kessoku T, Kobayashi T, Imajo K, et al. Comparing the effects of tofogliflozin and pioglitazone in non-alcoholic fatty liver disease patients with type 2 diabetes mellitus (ToPiND study): a randomized prospective open-label controlled trial. BMJ Open Diab Res Care. 2021; 9: Available from: https://doi.org/10.1136/ bmjdrc-2020-001990.
  145. Takeshita Y, Honda M, Harada K, Kita Y, Takata N, Tsujiguchi H, et al. Comparison of Tofogliflozin and Glimepiride Effects on Nonalcoholic Fatty Liver Disease in Participants With Type 2 Diabetes: A Randomized, 48-Week, Open-Label, Active-Controlled Trial. Diabetes Care. 2022 Sep 1; 45 (9): 2064-2075. Available from: https://doi.org/10.2337/dc21-2049.
  146. Murakami K, Sasaki Y, Asahiyama M, Yano W, Takizawa T, Kamiya W, et al. Selective PPARα Modulator Pemafibrate and Sodium-Glucose Cotransporter 2 Inhibitor Tofogliflozin Combination Treatment Improved Histopathology in Experimental Mice Model of Non-Alcoholic Steatohepatitis. Cells. 2022 Feb 18; 11 (4): Available from: https://doi.org/10.3390/cells11040720.
  147. Pathak M, Parveen R, Khan P, Saha N, Agarwal N. Impact of tofogliflozin on hepatic outcomes: a systematic review. Eur J Clin Pharmacol. 2023 Jul 18. Available from: https://doi.org/10.1007/s00228-023-03537-w.
  148. Seino Y. Luseogliflozin for the treatment of type 2 diabetes. Expert Opin Pharmacother. 2014 Dec; 15 (18): 2741-2749.Available from: https://doi.org/1517/14656566.2014.978290.
  149. Yabe D, Hamamoto Y, Seino Y, Kuwata H, Kurose T, Seino Y. Sodium glucose co-transporter 2 inhibitor luseogliflozin in the management of type 2 diabetes: a drug safety evaluation. Expert Opin Drug Saf. 2017 Oct; 16 (10): 1211-1218. Available from: https://doi.org/1080/14740338.2017.1359252.
  150. Qiang S, Nakatsu Y, Seno Y, Fujishiro M, Sakoda H, Kushiyama A, et al. Treatment with the SGLT2 inhibitor luseogliflozin improves nonalcoholic steatohepatitis in a rodent model with diabetes mellitus. Diabetol Metab Syndr. 2015 Nov 19; 7: Available from: https://doi.org/10.1186/s13098-015-0102-8.
  151. Fushimi N, Shibuya T, Takeishi S, Itou S, Kawai H, Mori A. Hepatic fat deposition is improved more with SGLT2 inhibitor luseogliflozin compared with sitagliptin: a randomised, crossover, controlled study using computed tomography. Diabetologia. 2015; 58 (1): Available from: https://doi.org/10.1007/s00125-015-3687-4.
  152. Sumida Y, Murotani K, Saito M, Tamasawa A, Osonoi Y, Yoneda M, et al. Effect of luseogliflozin on hepatic fat content in type 2 diabetes patients with non-alcoholic fatty liver disease: A prospective, single-arm trial (LEAD trial). Hepatol Res. 2019 Jan; 49 (1): 64-71.Available from: https://doi.org/1111/hepr.13236.
  153. Shibuya T, Fushimi N, Kawai M, Yoshida Y, Hachiya H, Ito S, et al. Luseogliflozin improves liver fat deposition compared to metformin in type 2 diabetes patients with non-alcoholic fatty liver disease: A prospective randomized controlled pilot study. Diabetes Obes Metab. 2018 Feb; 20 (2): 438-442. Available from: https://doi.org/10.1111/dom.13061.
  154. Fujimori N, Tanaka N, Kimura T, Sano K, Horiuchi A, Kato N, et al. Long-term luseogliflozin therapy improves histological activity of non-alcoholic steatohepatitis accompanied by type 2 diabetes mellitus. Clin J Gastroenterol. 2020 Feb; 13 (1): 83-89. Available from: https://doi.org/10.1007/s12328-019-01018-1.
  155. Seino H. Efficacy and Safety of Luseogliflozin in Patients with Type 2 Diabetes Complicated by Hepatic Dysfunction: A Single-Site, Single-Arm, Open-Label, Exploratory Trial. Diabetes Ther. 2021 Mar; 12 (3): 863-877. Available from: https://doi.org/10.1007/s13300-021-01014-0.
  156. Hajika Y, Kawaguchi Y, Hamazaki K, Kumeda Y. Beneficial effects of luseogliflozin on lipid profile and liver function in patients with type 2 diabetes mellitus (BLUE trial): a single-center, single-arm, open-label prospective study. Diabetol Metab Syndr. 2023 May 11; 15 (1): Available from: https://doi.org/10.1186/s13098-023-01074-1.
  157. Mohan V, Mithal A, Joshi SR, Aravind SR, Chowdhury S. Remogliflozin Etabonate in the Treatment of Type 2 Diabetes: Design, Development, and Place in Therapy. Drug Des Devel Ther. 2020 Jun 24; 14: 2487-2501.Available from: https://doi.org/2147/DDDT.S221093.
  158. Nakano S, Katsuno K, Isaji M, Nagasawa T, Buehrer B, Walker S, et al. Remogliflozin Etabonate Improves Fatty Liver Disease in Diet-Induced Obese Male Mice. J Clin Exp Hepatol. 2015 Sep; 5 (3): 190-198.Available from: https://doi.org/1016/j.jceh.2015.02.005.
  159. Bando Y, Ogawa A, Ishikura K, Kanehara H, Hisada A, Notumata K, et al. The effects of ipragliflozin on the liver-to-spleen attenuation ratio as assessed by computed tomography and on alanine transaminase levels in Japanese patients with type 2 diabetes mellitus. Diabetology international. 2017 Jun; 8: 218-227. Available from: https://doi.org/10.1007/s13340-016-0302-y. 
  160. Ito D, Shimizu S, Inoue K, Saito D, Yanagisawa M, Inukai K, et al. Comparison of Ipragliflozin and Pioglitazone Effects on Nonalcoholic Fatty Liver Disease in Patients With Type 2 Diabetes: A Randomized, 24-Week, Open-Label, Active-Controlled Trial. Diabetes Care. 2017. 40 (10): 1364–1372. Available from: https://doi.org/2337/dc17-0518.
  161. Han E, Lee YH, Lee BW, Kang ES, Cha BS. Ipragliflozin additively ameliorates non-alcoholic fatty liver disease in patients with type 2 diabetes controlled with metformin and pioglitazone: a 24-week randomized controlled trial. Journal of clinical medicine. 2020 Jan 18; 9 (1): Available from: https://doi.org/10.3390/jcm9010259.
  162. Tsurutani Y, Nakai K, Inoue K, Azuma K, Mukai S, Maruyama S, et al. Comparative study of the effects of ipragliflozin and sitagliptin on multiple metabolic variables in Japanese patients with type 2 diabetes: A multicentre, randomized, prospective, open-label, active-controlled study. Diabetes Obes Metab. 2018. 20 (11): 2675–2679. Available from: https://doi.org/1111/dom.13421.
  163. Inoue H, Morino K, Ugi S, Tanaka-Mizuno S, Fuse K, Miyazawa I, et al. Ipragliflozin, a sodium-glucose cotransporter 2 inhibitor, reduces body weight and fat mass, but not muscle mass, in Japanese type 2 diabetes patients treated with insulin: A randomized clinical trial. J Diabetes Investig. 2019. 10 (4): 1012–1021. Available from: https://doi.org/1111/jdi.12985.
  164. Takahashi H, Kessoku T, Kawanaka M, Nonaka M, Hyogo H, Fujii H, et al. Ipragliflozin improves the hepatic outcomes of patients with diabetes with NAFLD. Hepatology communications. 2022 Jan; 6 (1): 120-32. Available from: https://doi.org/10.1002/hep4.1696.
  165. Zhou F, Du N, Zhou L, Wang C, Ren H, Sun Q. The safety of sotagliflozin in the therapy of diabetes mellitus type 1 and type 2: A meta-analysis of randomized trials. Front Endocrinol (Lausanne). 2022 Sep 26; 13: Available from: https://doi.org/10.3389/fendo.2022.968478.
  166. Posch MG, Walther N, Ferrannini E, Powell DR, Banks P, Wason S, et al. Metabolic, Intestinal, and Cardiovascular Effects of Sotagliflozin Compared With Empagliflozin in Patients With Type 2 Diabetes: A Randomized, Double-Blind Study. Diabetes Care. 2022 Sep 1; 45 (9): 2118-2126. Available from: https://doi.org/10.2337/dc21-2166.
  167. Bode D, Semmler L, Wakula P, Hegemann N, Primessnig U, Beindorff N, et al. Dual SGLT-1 and SGLT-2 inhibition improves left atrial dysfunction in HFpEF. Cardiovasc Diabetol. 2021 Jan 7; 20 (1): Available from: https://doi.org/10.1186/s12933-020-01208-z.
  168. Harrison SA, Manghi FP, Smith WB, Alpenidze D, Aizenberg D, Klarenbeek N, et al. Licogliflozin for nonalcoholic steatohepatitis: a randomized, double-blind, placebo-controlled, phase 2a study. Nat Med. 2022 Jul; 28 (7): 1432-1438. Available from: https://doi.org/1038/s41591-022-01861-9.
  169. Fiorucci S, Biagioli M, Sepe V, Zampella A, Distrutti E. Bile acid modulators for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs. 2020 Jun; 29 (6): 623-632.Available from: https://doi.org/1080/13543784.2020.1763302.
  170. Jiang H, Chen HC, Lafata KJ, Bashir MR. Week 4 Liver Fat Reduction on MRI as an Early Predictor of Treatment Response in Participants with Nonalcoholic Steatohepatitis. Radiology. 2021 Aug; 300 (2): 361-368. Available from: https://doi.org/1148/radiol.2021204325.
  171. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo- controlled trial. The Lancet. 2015; 385 (9972): 956–965. Available from: https://doi.org/10.1016/S0140-6736(14)61933-4.
  172. Younossi ZM, Ratziu V, Loomba R, Rinella M, Anstee QM, Goodman Z, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. The Lancet. 2019; 394 (10215): 2184–2196. Available from: https://doi.org/ 1016/S0140-6736(19)33041-7.
  173. Tacke F, Weiskirchen R. Non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH)-related liver fibrosis: mechanisms, treatment and prevention. Ann Transl Med. 2021 Apr; 9 (8): Available from: https://doi.org/10.21037/atm-20-4354.
  174. Sangro P, de la Torre Aláez M, Sangro B, D’Avola D.Metabolic dysfunction–associated fatty liver disease (MAFLD): an update of the recent advances in pharmacological treatment. J Physiol Biochem. 2023. Available from: https://doi.org/1007/s13105-023-00954-4.
  175. Marjot T, Green CJ, Charlton CA, Cornfield T, Hazlehurst J, Moolla A, et al. Sodium-glucose cotransporter 2 inhibition does not reduce hepatic steatosis in overweight, insulin-resistant patients without type 2 diabetes. JGH Open. 2019 Nov 5; 4 (3): 433-440. Available from: https://doi.org/10.1002/jgh3.12274.
  176. Liu X, Chen Y, Liu T, Cai L, Yang X, Mou C. The effects of Sodium-glucose cotransporter 2 inhibitors on adipose tissue in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne). 2023 Jan 27; 14: Available from: https://doi.org/10.3389/fendo.2023.1115321.
  177. Lazarus JV, Kakalou C, Palayew A, Karamanidou C, Maramis C, Natsiavas P, et al. A Twitter discourse analysis of negative feelings and stigma related to NAFLD, NASH and obesity. Liver Int. 2021 Oct; 41 (10): 2295-2307. Available from: https://doi.org/10.1111/liv.14969.
  178. Dougherty JA, Guirguis E, Thornby KA. A Systematic Review of Newer Antidiabetic Agents in the Treatment of Nonalcoholic Fatty Liver Disease. Ann Pharmacother. 2021 Jan; 55 (1): 65-79. Available from: https://doi.org/10.1177/1060028020935105.
  179. Sumida Y, Yoneda M, Tokushige K, Kawanaka M, Fujii H, Yoneda M, et al. Japan Study Group of NAFLD (JSG-NAFLD). Hepatoprotective Effect of SGLT2 Inhibitor on Nonalcoholic Fatty Liver Disease. Diab Res Open Access. 2020 Mar 05; 2 (S1): 17-25. Available from: https://doi.org/10.3390/ijms21061907. 
  180. Mazzone T, Meyer PM, Feinstein SB, Davidson MH, Kondos GT, D’Agostino RB Sr, et al. Effect of pioglitazone compared with glimepiride on carotid intima‐media thickness in type 2 diabetes: a randomized trial. JAMA. 2006; 296 (21): 2572‐ Available from: https://doi.org/10.1001/jama.296.21.joc60158.
  181. Gastaldelli A, Harrison S, Belfort‐Aguiar R, Hardies J, Balas B, Schenker S,et al. Pioglitazone in the treatment of NASH: the role of adiponectin. Alimentary Pharmacol and Ther. 2010; 32 (6): 769‐  Available from: https://doi.org/10.1111/j.1365‐2036.2010.04405.x.
  182. Cho KY, Nakamura A, Omori K, Takase T, Miya A, Yamamoto K, et al. Favorable effect of sodium-glucose cotransporter 2 inhibitor, dapagliflozin, on non-alcoholic fatty liver disease compared with pioglitazone. J Diabetes Investig. 2021 Jul; 12 (7): 1272 – 1277. Available from: https://doi.org/10.1111/jdi.13457.
  183. Bica IC, Stoica RA, Salmen T, Janež A, Volčanšek Š, Popovic D, et al. The Effects of Sodium-Glucose Cotransporter 2-Inhibitors on Steatosis and Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease or Steatohepatitis and Type 2 Diabetes: A Systematic Review of Randomized Controlled Trials. Medicina (Kaunas). 2023 Jun 12; 59 (6): Available from: https://doi.org/10.3390/medicina59061136.
  184. Cusi K. A diabetologist’s perspective of non-alcoholic steatohepatitis (NASH): Knowledge gaps and future directions. Liver Int. 2020 Feb; 40 (1): 82-88. Available from: https://doi.org/10.1111/liv.14350.
  185. Bellanti F, Lo Buglio A, Dobrakowski M, Kasperczyk A, Kasperczyk S, Aich P, et al. Impact of sodium glucose cotransporter-2 inhibitors on liver steatosis/fibrosis/inflammation and redox balance in non-alcoholic fatty liver disease. World J Gastroenterol. 2022 Jul 14; 28 (26): 3243-3257. Available from: https://doi.org/10.3748/wjg.v28.i26.3243.
  186. Arase Y, Shiraishi K, Anzai K, Sato H, Teramura E, Tsuruya K,et al. Effect of Sodium Glucose Co-Transporter 2 Inhibitors on Liver Fat Mass and Body Composition in Patients with Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus. Clin Drug Investig. 2019; 39 (7): 631-641. Available from: https://doi.org/10.1007/s40261-019-00785-6.