Doms № 6 -2023

Визначення співвідношення альбуміну до креатиніну в діагностиці діабетичної хвороби нирок
(огляд літератури та власні дані)


Саєнко Я. А., Реброва Я. Є., Марушко Є. Ю., Маньковський Б. М.



Спираючись на власний практичний досвід та дані наукової літератури, ми можемо стверджувати, що вимірювання співвідношення альбуміну до креатиніну в сечі та розрахунок швидкості клубочкової фільтра- ції є важливими інструментами для своєчасної діагностики хронічної хвороби нирок (ХХН), моніторингу ефективності лікування та визначення динаміки стану нирок у пацієнта. Завдяки ранній діагностиці ХХН можливо приймати необхідні заходи для уповільнення чи навіть призупинення прогресування захворювання. Також можливо покращити прогноз та якість життя пацієнтів, своєчасно застосувавши нефропротек- торні препарати, такі як інгібітори натрійзалежного котранспортеру глюкози 2-го типу, що має медичне, соціальне та економічне значення.

Ключові слова: співвідношення альбуміну до креатиніну в сечі, хронічна хвороба нирок, діабетична хвороба нирок, цукровий діабет 2-го типу, інгібітори натрійзалежного котранспортеру глюкози 2-го типу, дапагліфлозин

The role of the albumin-to-creatinine ratio in the diagnosis of diabetic kidney disease

(literature review and own findings)

Saienko YA, Rebrova YE, Marushko YU, Mankovsky BM Ukrainian Children’s Cardiac Center, Kyiv, Ukraine


Based on our own practical experience and data from scientific literature, we can assert that measuring the ratio of albumin to creatinine and calculating the glomerular filtration rate are important tools for the timely diagnosis of chronic kidney disease (CKD), monitoring treatment effectiveness, and determining the dynamics of a patient’s renal condition. Early diagnosis of CKD allows us to take necessary measures to slow down or even halt the progression of the disease. By timely administering nephroprotective drugs, such as SGLT-2 inhibitors, we can improve the prognosis and quality of life for patients, which holds medical, social, and economic significance.

Key words: Albumin-to-creatinine ratio in urine, chronic kidney disease, diabetic kidney disease, type 2 diabetes, SGLT-2 inhibitors, dapagliflozin




  1. Centers for Disease Control and Prevention Chronic kidney disease (CKD) surveillance system: 2021. https://nccd.cdc. gov/ckd/default.aspx Accessed September 30, 2021.

  2. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Nephrology and Dialysis. 2023. Vol. 25, no. 2. P. 141–221. URL: https://doi. org/10.28996/2618-9801-2023-2-141-221

  3. Y. Lu et al. Vascular complications of diabetes: A narra- tive review. Medicine. 2023. Vol. 102, no. 40. P. e35285. URL:

  4. M. Oshima et al. Trajectories of kidney function in diabetes: a clinicopathological update. Nature Reviews Nephrology. 2021. URL:

  5. Vasanth Rao et al. Diabetic nephropathy: An update on pathogenesis and drug development. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2019. Vol. 13, no. 1. P. 754–762. URL:

  6. K. A. Mapuskar et al. Mitochondrial Oxidative Metabo- lism: An Emerging Therapeutic Target to Improve CKD Outcomes. 2023. Vol. 11, no. 6. P. 1573. URL: https://doi. org/10.3390/biomedicines11061573

  7. Roelofs, J.J.; Vogt, L. (Eds.) Diabetic Nephropathy: Patho- physiology and Clinical Aspects; Springer: Cham, Switzer- land, 2019; ISBN 978-3-319-93521-8.

  8. K. Matsushita et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular out- comes: a collaborative meta-analysis of individual partici- pant data. The Lancet Diabetes & Endocrinology. 2015. Vol. 3, no. 7. P. 514–525. URL: s2213-8587(15)00040-6

  9. B. C. Astor et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kid- ney disease population cohorts. Kidney International. 2011. Vol. 79, no. 12. P. 1331–1340. URL: ki.2010.550

  10. R. T. Gansevoort et al. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk popu- lation cohorts. Kidney International. 2011. Vol. 80, no. 1. P. 93–104. URL:
  11. I. H. de Boer et al. Diabetes management in chronic kidney disease: a consensus report by the American Diabetes As- sociation (ADA) and Kidney Disease: Improving Global Out- comes (KDIGO). Kidney International. 2022. URL: https://
  12. KANNEL W. B. Factors of Risk in the Development of Coro- nary Heart Disease–Six-Year Follow-up Experience. Annals of Internal Medicine. 1961. Vol. 55, no. 1. P. 33. URL: https://
  13. Kannel W. B., Schwartz M. J., McNamara P. M. Blood Pres- sure and Risk of Coronary Heart Disease: The Framingham Study. Diseases of the Chest. 1969. Vol. 56, no. 1. P. 43–52. URL:
  14. Levy D. Left Ventricular Mass and Incidence of Coronary Heart Disease in an Elderly Cohort. Annals of Internal Medicine. 1989. Vol. 110, no. 2. P. 101. URL: https://doi. org/10.7326/0003-4819-110-2-101
  15. J. Coresh et al. Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies. The Lan- cet Diabetes & Endocrinology. 2019. Vol. 7, no. 2. P. 115–127. URL:
  16. Christofides E. A., Desai N. Optimal Early Diagnosis and Monitoring of Diabetic Kidney Disease in Type 2 Dia- betes Mellitus: Addressing the Barriers to Albuminuria Testing. Journal of Primary Care & Community Health. 2021. Vol. 12. P. 215013272110036. URL: https://doi. org/10.1177/21501327211003683
  17. P. A. McCullough et al. Cardiovascular Disease in Chronic Kidney Disease: Data from the Kidney Early Evaluation Pro- gram (KEEP). Current Diabetes Reports. 2010. Vol. 11, no. 1. P. 47–55. URL:
  18. K. R. Tuttle et al. Diabetic Kidney Disease: A Report From an ADA Consensus Conference. Diabetes Care. 2014. Vol. 37, no. 10. P. 2864–2883. URL: https://doi. org/10.2337/dc14-1296

  19. KGIGO 2012 Clinical Practice Guideline for the Evalu- ation and Management of Chronic Kidney Disease. Ne- phrology and Dialysis. 2017. Vol. 19, no. 1. P. 22–206. URL:

  20. X. Lin et al. Elevated urine albumin creatinine ratio increases cardiovascular mortality in coronary artery disease patients with or without type 2 diabetes mellitus: a multicenter retrospective study. Cardiovascular Diabetol- ogy. 2023. Vol. 22, no. 1. URL: s12933-023-01907-3

  21. N. A. ElSayed et al. Chronic Kidney Disease and Risk Man- agement: Standards of Care in Diabetes–2023. Diabetes Care. 2022. Vol. 46, Supplement_1. P. S191–S202. URL: https://doi. org/10.2337/dc23-s011

  22. B. Bikbov et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2020. Vol. 395, no. 10225. P. 709–733. URL: https://doi. org/10.1016/s0140-6736(20)30045-3

  23. K. Matsushita et al. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nature Re- views Nephrology. 2022. URL: 022-00616-6

  24. Volpe M. Microalbuminuria screening in patients with hypertension: recommendations for clinical practice. In- ternational Journal of Clinical Practice. 2007. Vol. 62, no. 1. P. 97–108.URL: 1241.2007.01620.x

  25. Gerstein H. C. Reduction of cardiovascular events and mi- crovascular complications in diabetes with ACE inhibitor treatment: HOPE and MICRO-HOPE. Diabetes/Metabo- lism Research and Reviews. 2002. Vol. 18, S3. P. S82–S85. URL:


  1. Bang C. N., Devereux R. B., Okin P. M. Regression of elec- trocardiographic left ventricular hypertrophy or strain is associated with lower incidence of cardiovascular morbidity and mortality in hypertensive patients independent of blood pressure reduction – A LIFE review. Journal of Electrocar- diology. 2014. Vol. 47, no. 5. P. 630–635. URL: https://doi. org/10.1016/j.jelectrocard.2014.07.003
  2. Girard L. Modern Management of Chronic Kidney Disease in T2MD: A Practical Overview for Primary Care Provid- ers. Canadian Primary Care Today. 2023. URL: https://doi. org/10.58931/cpct.2023.119
  3. P. Theofilis et al. Diabetes Mellitus and Heart Failure: Epidemiology, Pathophysiologic Mechanisms, and the Role of SGLT2 Inhibitors. Life. 2023. Vol. 13, no. 2. P. 497. URL:
  4. H. Akiyama et al. Evolution of sodium-glucose co-transport- er 2 inhibitors from a glucose-lowering drug to a pivotal ther- apeutic agent for cardio-renal-metabolic syndrome. Fron- tiers in Endocrinology. 2023. Vol. 14. URL: https://doi. org/10.3389/fendo.2023.1111984
  5. M. Beles et al. Cardio–renal–metabolic syndrome: clinical features and dapagliflozin eligibility in a real‐world heart failure cohort. ESC Heart Failure. 2023. URL: https://doi. org/10.1002/ehf2.14381
  6. J. J. Neumiller et al. Clinical Evidence and Proposed Mecha- nisms for Cardiovascular and Kidney Benefits from So- dium–Glucose Co-transporter-2 Inhibitors. European En- docrinology. 2022. Vol. 18, no. 2. P. 106. URL: https://doi. org/10.17925/ee.2022.18.2.106
  7. D. C. Wheeler et al. The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics. Nephrology Dialysis Transplan- tation. 2020. Vol. 35, no. 10. P. 1700–1711. URL: https://doi. org/10.1093/ndt/gfaa234
  8. Jennifer E. Sprague, M.D., Ph.D. and Ana María Arbeláez, M.D. Glucose Counterregulatory Responses to Hypoglycemia Pediatr Endocrinol Rev. 2011 Sep; 9(1): p. 463–475.